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ABSTRACT 

This thesis develops a technique for formulating the full nonlinear equations of 

motion for a coupled rotor-fuselage system utilizing the symbolic processing software 

MAPLE®. The symbolic software is further utilized to automatically convert the 

equations of motion into C, Fortran or MATLAB® source code formatted specifically for 

numerical integration. The compiled source code can be accessed and numerically 

integrated by the dynamic simulation software SIMULINK®. SIMULINK®is utilized to 

generate time history plots of blade and fuselage motion. These time traces can be used to 

explore the effects of damping nonlinearities, structural nonlinearities, active control, 

individual blade control, and damper failure on ground resonance. In addition, a 

MATLAB® program was developed to apply the Moving Block Technique for 

determining modal damping of the rotor-fuselage system from the time marching 

solutions. 
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L   INTRODUCTION 

The motivation for this study grew from interest in smart materials and their 

appUcationtoheücopterdynamicproblems. Smart materials can be used for aeroelastic 

tailoring of rotor system dynamic components and also as a mechanism for implementation 

of active rotor control without adding unwanted mechanical complexities.  Active control 

of helicopter rotor blades has several potential benefits. Among these benefits are 

reductions in vibration and acoustic signature as well as elimination of mechanical and 

aeromechanical instabilities such as air and ground resonance. The idea of active control 

of helicopter rotors has received much attention in recent years. One of the driving forces 

behind this interest is the increased popularity of bearingless rotors, which offer the 

benefits of simplistic design and maintainability, but often give rise to air and ground 

mechanical stability problems. 

It was immediately apparent that in order to conduct an in-depth investigation into 

the application of smart material technology to aeroelastichy and helicopter active control, 

the ability to accurately model coupled rotor-foselage dynamics was needed. Several 

software packages such as CAMRAD® by Johnson Aeronautics, FLIGHTLAB> 

Advanced Rotorcraft Technologies Corporation, and UMARC®, developed at the 

University of Maryland, offer this capability. All of these codes, while very capable, are 

quite complex and require considerable experience in order for a user to become proficient 

in applying them As a result, this study was initiated in order to develop a computational 

tool for modeling and analysis of coupled rotor fuselage dynamics by utilizing readily 

available and generally applicable technical and mathematical software. The scope of this 

study involves utilizing the symbolic manipulation software, MAPLE @ by Waterloo 



Software, and the dynamic simulation software, SIMULINK® by The Mathworks, to 

model and simulate the unstable mechanical phenomenon of helicopter ground resonance. 

The resulting models wfll be used to do parametric studies of ground resonance, including 

a look at the effect of active rotor control using fuselage state feedback. In order to better 

quantify the effects of parameter variations and active control schemes from simulation 

data, the moving block technique was utilized for time history analysis to quantify modal 

damping characteristics. 

Ground resonance is a potentially destructive mechanical instability that can occur 

in helicopters with fully articulated, bearingless, or hingeless main rotor designs. The 

phenomenon of ground resonance is the result of a coupling between fuselage motion on 

its landing gear and rotor blade lead-lag and flap motion.   The equations of motion 

describing the coupled rotor-fuselage system are nonlinear and generally quite complex 

even for simplified models. Procedures and techniques for dealing with the various 

complexities of ground resonance and other mechanical and aeromechanical phenomena 

that are characteristic of helicopters have been extensively investigated over the past few 

decades and an abundance of literature is available on the subject. The following section 

presents a brief overview of various approaches and techniques used in modeling coupled 

rotor-fuselage systems for the purpose of studying the ground resonance problem and 

active rotor control. 



IL BACKGROUND 

The Mowing paragraphs discuss the phenomenon of ground resonance and some 

of the derivation and modeling techniques utilized through the years to manage the 

formulation and analysis of the complex equations of motion. 

Ground resonance has been an observed happening in rotorcraft since the first 

autogyros were flown early in the 20* century. It can occur when any rotor system is 

placed on a flexible support. Essentially, a perturbation of a rotor blade causes the rotor 

center of gravity to shift creating an inertial load on the fuselage. The fuselage is flexibly 

connected to the ground via its landing gear and will start to oscillate in response to this 

inertial load. For a certain range of rotor rotational speeds, the fuselage oscillations will 

cause the amplitude of the blade oscillations about their respective hinges to increase, and 

this further increases the inertial forces on the fuselage. If left to its own accord, this 

coupling of fuselage and rotor blade motion will increase in amplitude until some nonlinear 

restoring force brings the system into a limit cycle or until some part of the rotorcraft fails 

[Ref. 1]. 

No discussion of helicopter ground resonance would be complete without 

considering the classic work of Coleman and Feingold [Ref. 2] completed in the 1940's. 

Coleman and Feingold successfully analyzed the coupling between a rotor and fuselage 

and identified the ground resonance instability as a purely self excited, elasto-mechanical 

phenomenon. Their study was based on a simplified three-bladed rotor model which is the 

basis for one of the models considered in this study. The model allows for hub 

translational degrees of freedom in one plane and rotor blade lead-lag degrees of freedom 

in the same plane (see Figure 3.1). In deriving the equations of motion, Coleman makes 



use of "Coleman" coordinates [Ref. 2] and complex variables to reduce the number of 

equations that describe the system to two complex (four real). From the equations of 

motion, the characteristic equation is derived by assuming a solution that has the rotor 

center of mass and fuselage center of mass moving in an elliptic whirling motion. The 

roots of the characteristic equation are the characteristic whirling speeds of the rotor, and 

the nature of these roots indicate the nature of the system stability, i.e., whether or not the 

rotor rotational speed resides in the self excited region.   Coleman and Feingold ultimately 

reduce the results of their study to a series of graphs which can be applied to a wide range 

of rotor configurations. 

Coleman and Feingold's work became the basis for the evolution of theory and 

design techniques used for dealing with ground resonance. Although this classic theory 

offers much insight and understanding into the phenomenon, especially for conventional 

articulated rotor systems, the increasing popularity of hmgeless and bearingless rotor 

designs in modern helicopters and the growing desire to eliminate the need for mechanical 

dampers requires more sophisticated analytical techniques. 

As computational power improved with the evolution of digital computers, more 

general techniques for analyzing rotor system stability came into being. Peters and 

Hohenemser [Ref. 3] apply Floquet analysis to the problem of lifting rotor stability. 

Floquet analysis is a method which can be used to determine the stability of solutions to 

systems of linear ordinary differential equations with periodic coefficients. The Floquet 

transition matrix which relates the system state variables at the beginning and end of a 

rotational period is computed by numerical time wise integration.   The eigenvalues of the 

transition matrix are a measure of system stability.   Hammond [Ref. 4] applies Floquet 



analysis to the prediction of mechanical instabilities, specifically examining the case of 

unbalanced lead-lag damping. The unbalanced problem requires solution of the equations 

of motion with the blade equations expressed in the rotating reference frame because a 

transformation to the fixed system is no longer possible for a ground resonance analysis as 

was possible for the isometric case. As a result, you are left with a system of equations 

with periodic coefficients which can be handled by the Floquet method. 

Hingeless and bearingless rotor configurations often face the additional difficulty 

of air resonance. Aerodynamics may play more than a passive roll in the ground 

resonance regime in hingeless systems in contrast to articulated systems where 

aerodynamics have little effect.  As a result, more complex models are required to 

accurately represent the physics of the helicopter aeromechanical stability problem 

Models must include blade flap and torsional degrees of freedom as well as lead-lag 

degrees of freedom Fuselage models also should include pitch and roll as well as 

transnational degrees of freedom Aerodynamic models can range from quasi-steady strip 

theory to unsteady aerodynamic theories which include elaborate wake models or dynamic 

inflow models.  Ormiston [Ref. 5] utilizes a rigid blade and rigid fuselage model with flap- 

lag and pitch-roll degrees of freedom to conduct parametric investigations based on an 

eigenvalue analysis.  As is typical, the equations of motion were derived by a Newtonian 

approach and the resulting system of nonlinear differential equations are linearized for 

small perturbations.   The model includes linear rotor blade and landing gear springs, 

viscous damping, and quasi-steady aerodynamics. Freidmann and Venkatesan [Ref. 6] 

and Freidmann and Warmbrodt [Ref. 7] derive the complete set of governing equations of 

a helicopter rotor coupled to a rigid body fuselage. The equations account for rotor blade 



elastic deformations and include quasi-steady aerodynamics or modified Theordorsen 

unsteady aerodynamic theory.   In deriving the full equations of motion, Freidmann et al., 

stress the importance of applying an ordering scheme to the process in order to handle the 

complexity of the equations and enormous number of terms generated by their expansion. 

The equations, as presented by Freidmann et al. [Ref 6 and 7], are in a form which makes 

them generally applicable to a wide range of rotorcraft problems. 

Another interest in the study of helicopter ground resonance is the effect that 

nonlinear elastic and damping forces have on stability. Tongue [Ref. 1], Tongue and 

Flowers [Ref. 8 and 9], Tongue and Jankowski [Ref. 10], and Tang and Dowell [Ref. 11], 

use variations of the nonlinear technique of harmonic balance using describing functions to 

represent nonlinear damping.   The technique is useful for investigating limit cycle 

behavior of strongly nonlinear systems and its impact on system stability. 

Active control of rotor systems and hs application to stabilizing ground and air 

resonance has been investigated by Straub [Ref. 12] and Straub and Wambrodt [Ref 13]. 

In both of these studies the nonlinear periodic equations of motion, derived with a method 

similar to that of Freidmann and Venkatesan [Ref. 6], are linearized and incorporated into 

a state space model in which active control inputs are input to the rotor blades from the 

fixed coordinate system via a swashplate. The state space model is then used to study the 

influence that state feedback gain and phase have on system damping. 

Helicopter aeromechanical instabilities can be analyzed by methods ranging from 

Coleman's classic analysis to direct time integration of the equations of motion. As 

engineers strive to develop rotor systems free of ground and air resonance which do not 

require the addition of maintenance intensive mechanical damping systems, more 



elaborate models will be needed to accurately capture all physical aspects of the problem. 

To achieve the truly damperless rotor Ormiston [Ref. 14] addresses three different 

approaches which may be feasible, 1) incorporating high damping material into the blade 

or flexbeam structure, 2) automatic feedback control, and 3) development of aeroelastic 

couplings to provide inherent stability. These three approaches have provided the impetus 

behind the work which follows. The goals of the following study were to develop a 

modeling technique utilizing symbolic processing to manage the complexity of deriving 

and coding the coupled rotor-fuselage equations of motion, incorporate the resulting 

model into a dynamic simulation environment, and have a final product which provides a 

useful tool for conducting parametric studies of helicopter aeromechanical behavior. 





m. EQUATIONS OF MOTION 

The equations of motion for a coupled rotor-fuselage system were derived using 

the Lagrangian approach This study was concerned with two models, one being 

characterized as simple and the other as complex. The Lagrangian approach was selected 

as opposed to the Newtonian because it is easily implemented with the aid of a symbolic 

processor. For a historical note, it is interesting that Lagrange himself recognized the 

suitability of his methods to routine processing. He states in InsMächamque Anafytique, 

The methods which I present here do not require either 
constructions or reasonings of geometrical or mechanical nature, but only 
algebraic operations proceeding after a regular and uniform plan. Those 
who love the Analysis, will see with pleasure Mechanics made a branch of 
it and will be grateful to me for having thus extended its domain. 

The equations for both models considered were formulated with Lagranges method in 

their mil nonlinear forms, i.e., no ordering scheme, small angle assumptions, or 

linearization techniques were applied during derivation and subsequent coding. 

A. SIMPLIFIED MODEL DESCRIPTION 

The simplified model is based on that used by Coleman [Ref. 2], and is shown 

schematically in Figure 3.1. A three bladed model will be the only case considered in this 

report, but all mathematical modeling methods used in this study can be easily generalized 

to any number of blades. Elastic forces generated by rotor blade and flexbeam motion 

were modeled as a linear torsional spring located at the effective hinge position of the 

blade. The landing gear stiffness was also modeled whh linear springs. For the basic 

simplified model, landing gear and lead-lag damping was modeled with linear dashpot 

type dampers.   Addition of nonlinear mechanical effects such as hardening and softening 

springs, hydraulic damping, and lead-lag stops, will be discussed in a later section. 



Figure 3.1 Schematic of Simplified Rotor-Fuselage System 

This model allows for the following degrees of freedom: 

Ui = Fuselage translation in 1-direction (x-direction). 

u2 = Fuselage translation in 2-direction (y-direction). 

£k= Lead-lag angular displacement of kA rotor blade. 

A. COMPLEX MODEL DESCRIPTION 

The complex model is based on that used by Straub [Ref. 12]. This model assumes 

rigid blades and fuselage. The blade and flexbeam elastic forces are modeled, as in the 

simplified model, as equivalent torsional springs located at effective hinge positions offset 

from the rotor hub (flap and lead-lag hinges are assumed to be coincident). 

This model allows for the following degrees of freedom: 

ui = Fuselage translation in 1-direction (x-direction). 

10 



U2 = Fuselage translation in 2-direction (y-direction). 

ri = Fuselage rotation about 1-axis (roll). 

r2= Fuselage rotation about 2-axis (pitch). 

£t= Lead-lag angular displacement of k& rotor blade. 

ßt = Flap angular displacement of k& rotor blade. 

C.  COORDINATE SYSTEMS AND TRANSFORMATIONS 

In developing the equations of motion for the two coupled rotor-fuselage models 

five coordinate systems were utilized with transformations between the various systems 

based on Euler angle rotations. The five coordinate systems are (1) inertial, fixed relative 

to the Earth, (2) fuselage, fixed to center of gravity of fuselage, (3) hub, parallel to 

fuselage system but offset a distance h in the positive z (or 3) direction, (4) undeformed 

blade, fixed to the effective hinge position on the k* blade, (5) deformed blade, fixed to 

the effective hinge position on the k* blade, but with the x-axis coincident with the blade 

'elastic' axis. Table 3.1 summarizes the notation used for the various coordinate systems. 

Table 3.1 Coordinate System Notation 

Coordinate System Representative Notation for a Vector in this 
System — 

Inertial [*  y A 
Fuselage r                  1? ■ <-»/     <~    <■"•' i [x   y   z\ 

Hub \x    y   z] 
Undeformed blade \x   y   z\ 
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Coordinate System 

Deformed blade 

Representative Notation for a Vector in this 
 System  

[x    y   z] 

The following generic transformations are defined: 

TM) = 

0 

cos(a) 

0 
sin(a) 

T2(a) = 

TM = 

0   - sin(a)   cos(a) 

cos(a)   0   - sin(or) 

0       1        0 

sin(a)   0    cos(ar) 

cos(a)     sin(or)   0 
- sin(a)   cos(cr)   0 

0 0       1 

(3.1) 

(3.2) 

(3.3) 

Where in general, Ti, T2, and T3 are rotations about the 1,2, and 3 axes respectively 

This notation can be directly utilized with the symbolic processor and will be used in the 

following section where the energy expressions necessary for the Lagrangian derivation 

are defined. The order of fuselage rotations when using these Euler angle transformations 

will be pitch - roll, and the order of rotor blade angular displacements will be flap-lag. 

The following relations summarize the coordinate transformations used for the simplified 

and complex models: 

Simplified model: 

1.  Hub to Inertia!: 

12 



X X "1  o o" 

y = 1 y ; / = 0    1   0 

z z 0   0   1 

;   Systems are parallel (3.4) 

2. Blade undefonned to Hub: 

-fewr 
3. Blade deformed to Blade undefonned: 

Complex model: 

1. Fuselage to Inertia!: 

2. Hub to Fuselage: 

M' 

^(itefc)]' 

5c X "l   0   0~ 

y = / y ; / = 0   1   0 

z z 0   0    1 

Systems are parallel. 

3. Blade undefonned to Hub: 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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X 

y =[r,Mr 
X 

y (3.9) 

4. Blade deformed to blade undefbrmed: 

= [T^k)T2(ßk)]T (3.10) 

D. DERIVATION UTILIZING SYMBOLIC PROCESSOR 

This section summarizes the development of the energy expressions necessary for 

the Lagrangian derivation. Here, the equations for the complex model are developed to 

illustrate how the symbolic processor was utilized. 

The Langrange equation can be expressed as follows: 

d[dT\     dT     dV     dD = E 
dt\dqt) 

(3.11) 
3qt     dqt     dqt 

Where, T is the kinetic energy, U is the potential energy, D is the dissipation function, Fi is 

a generalized force, and q; is a generalized displacement. The generalized force term, Fj, 

will describe the aerodynamic forces on the individual rotor blades and will be discussed in 

a later section, as a result, this derivation develops only the system of homogeneous 

equations. The various energy terms can be broken down into two categories, terms due 

to blade motion and terms due to fuselage motion, to give the following equations: 

T=TF+Z(TB)k (3.12) 
*=i 
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U = UF+ft(UB)k (3.13) 
i=l 

ff 

D = DF+Z{Us)k (314) 

Where the subscripts F and B indicate fuselage and rotor blade respectively. 

The kinetic energy of the kft rotor blade is given by the following expression: 

R 

2 

Where p is the position of a point on the elastic axis of the k& rotor blade with respect to 

the inertial coordinate system at any instant in time, and m' is the mass distribution per 

unit length of the blade (for this study mass distribution per unit length is assumed to be 

uniform). The position of a point on the elastic axis of a rotor blade, p, is expressed as 

the sum of relative positions with respect to the various coordinate systems transformed to 

the inertial system. Thus, 

P = {PFJ)J 
+
{PH_F)I +{PB«_H)I + {PU_^\ +{Pp_Bd)I , (3.16) 

where, for example, the term ipBu H\  is the position of the origin of the undeformed 

blade coordinate system with respect to the hub coordinate system transformed into the 

inertial coordinate system. The individual terms of equation (3.16), referring to equations 

(3.1) through (3.3) are defined as follows: 
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Where, 

\PFJ)J =PFJ 

(/w),=[^)r2k)]rÄ^ 

(/w) = [TMHr2)]T[T3(^)]T PB._B 

(ßBä_Bu)J = PB*_BU = 0   Origins are coincident 

PFI = 

ul 0 e r 

h >   PHF = 0 '■>    PBUH ~ 0 >     /7/,_5rf ~ 0 

0 h 0 0 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Equations (3.22) are substituted into the equations of (3.17) through (3.21) and 

the matrix multiplication is performed with the results substituted into equation (3.16). 

This gives a vector expression for the position of an arbitrary point on the elastic axis of 

the k* rotor blade with respect to the inertia! coordinate system at any instant in time in 

terms of the system degrees of freedom. The time derivative of this expression gives the 

velocity, p, which is substituted into equation (3.15) to give the kinetic energy for k* 

rotor blade. All of the calculus and algebra was accomplished with MAPLE® (see 

Appendix A for a look at the MAPLE® worksheet). 

The elastic forces generated by rotor blade motion give rise to a potential energy 

term in the Lagrange equation. Since a rigid blade model was assumed, the potential 
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energy was modeled using equivalent torsional springs to restrain the rotor blade, with 

spring constants selected to approximate elastic forces due to in plane and out of plane 

bending of the rotor blade (and the flexbeam in the ningeless case).  The potential energy 

of the k& rotor blade is 

{UB)J-KA>+\K& (3-23) 

An explanation of the validity of using an equivalent torsional spring system to model the 

elastic forces of a deformed rotor blade is given in some detail by Venkatesan and 

Friedmann [Ref. 6]. 

System damping is modeled in energy form by use of a dissipation function, which 

for the kft rotor blade of the complex rotor model is 

For the fuselage, the kinetic energy in terms of translational and rotational degrees 

of freedom is 

fc)™,4«A2+>A2 (325) 
'trims       2 

The fuselage potential energy is 

(P,L»iflV,* S-KRjr? (3.28) 

The dissipation functions for the fuselage are 
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foL.=£cA,+5<y>' 0.29) 

{DF)m=\cR,r;+\cW (3.30) 

The resulting inputs for the fuselage terms in equations (3.12) through (3.14) are 

•   r, = (r,)._+(r,L <331> 

tf,=(tf,L.+(ff,L (332> 

A--(A-U+(ATL <333> 

AD of the energy expressions defined above were entered into a MAPLE 

worksheet programmed to apply equation (3.11) and generate the equations of motion 

corresponding to each of the system's degrees of freedom (see Appendix A). An 

important characteristic of MAPLE® is that it allows for distinction between dependent 

and independent variables via functional notation, e.g., to indicate a variable '3F is a 

function of time (t) simply write h as 'X(t)\ It is also important to note that when 

applying Lagrange's equation in MAPLE®, derivatives are only understood when taken 

with respect to independent variables, so when taking derivatives with respect to the 

degrees of freedom and the time rates of change of the degrees of freedom, the time 

functional notation which represents these variables must be converted to independent 

variable notation. For example, the flap angle degree of freedom, ß (t), and its time rate 

of change , would have to be replaced in all of the energy expressions by the 

dT 
independent variables ,ß and dß, respectively, in order for terms like -j— and 
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^(where « -/>« - * = ^) to be evaluated properly by the MAPLE® 

symbolic engine. Additionally, for the time derivative term, j^jß, to be evaluated 

^torimedependentnotation.  The MAPLE® code «hieb accomplishes rite above 

„adulations for the complex model is contained in Appendix A. 

The equations of motion generated by «he MAM» program for the shnpffieri 

following equations of morion foramodel similar«» the one described in Figure 3.1. 

Af,x+C,i+M*l+*-I = 
(3.34) 

Myy + Cyy+VyM
+K

yy- (335) 

t=ll 

m*^ +Cfc 4 + **& + ^** sinfe) = (3.36) 
mbR(xsm(¥k +£)-Jpcos(^ +&)) 

HowersandTongueincludedanadditionaltennine.uaüo. 

theproduct of first derivatives and their absolute value, H.esetenns represent nonlinear 

doping, inclusion of nonlinear (hydraulic) damping in the dissipation function for input 

into Lagrange's equation will be discussed in alater section 
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Equations (3.34) through (3.35) were compared against the equations of motion 

generated by the MAPLE® program for a three bladed simple rotor fuselage model and 

were found to match exactly (except for the nonlinear damping terms which were not 

included initially). The MAPLE® equations for this case are shown in Appendix B. 
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IV. BUILDING THE SIMULATION MODEL 

A. S-FUNCTTONS AND CODE GENERATION 

Construction of the simulation model from the equations of motion was based on 

the structure of the SIMULINK® S-function. The S-function defines the dynamics of a 

model. It can be written in C or Fortran code or as a MATLAB® m-file (a mathematical 

programming language with similar syntax to Fortran). The structure of the S-function is 

generic so as to allow for a wide range of functionality when programming the dynamics 

of various systems. SIMULINK® accesses an S-function through its numerical integration 

routines. The routines make calls to the S-function for specific information, the type of 

information returned is dependent on the value of a flag variable sent by the integration 

routine. For example, 

flag= 0     S-function returns sizes of parameters and initial conditions, 

flag = 1      S-function returns state derivatives dx/dt, 

flag = 3      S-function returns outputs. 

The section of the S-function which computes the derivatives at each time step is the 

section which contains the equations of motion [Ref. 15]. 

As a result of the Lagrangian derivation, MAPLE® generated the equations of 

motion in the following form, 

P(z,5c,x,t) = 0 (4.1) 

where x is a vector of displacement degrees of freedom of the system. Unfortunately 

this form is not very useful when it comes to programming a SIMULINK® S-function, so 
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MAPLE® was further used to manipulate the equations of motion into the following 

equivalent form, 

[A(i,x,t)]x = f{2Xt) (4-2) 

where A is an NxN matrix and / an Nxl vector, with N = number of degrees of freedom 

of the system. This is possible since the equations are quasi-linear in the second derivative 

(acceleration) terms, i.e., no terms exist of types such as x2, or sin(x), etc. This form 

can then be transformed from N second order equations to 2N first order equations as 

follows, 

x = w 
(43) 

These equations can be evaluated at each time step in a numerical simulation to give the 

state derivatives. The primary job to be accomplished with MAPLE® was to generate the 

expressions for the elements of [A] and / (which can be quite lengthy) from the 

equations of motion. After this was accomplished, the MAPLE® code generation routine 

was used to automatically generate the optimized C or Fortran code that could be placed 

directly into an S-function template (See Appendix C for an example of the MAPLE 

code generation results). 

For each model, MAPLE® was used to generate the Fortran code representing the 

equations of motion. This code was used to create an S-function in MATLAB® m-file 

format. Because Fortran and m-file syntax are so similar, only minor editing was required. 

A copy of the S-function program for this case is contained in Appendix D. 
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B. NUMERICAL INTEGRATION ROUTINE (ODE SOLVER) 

SIMULINK® provides several numerical ordinary differential equation (ode) 

solvers (numerical integration algorithms).  The algorithms utilized in this study are from 

the Runge-Kutta (rk) family (rk45 and rk23). Runge-Kutta algorithms generally 

outperform other schemes for systems of nonlinear ordinary differential equations which 

are not too stiff The rk algorithms also handle discontinuities well [Ref. 7]. 

For completeness and to describe how the integration algorithms interact with 

SIMULINK® S-functions, a brief description of the rk method is given The first order 

ode (the following algorithm can be easily extended to systems of first order ode's), 

can be integrated between t„ and /„+/ to give the following, 

X'j-M+r'M* (45) 

In the rk method, the integral expression on the right hand side of equation (4.5) is 

approximated with a numerical integration scheme, such as Simpson's 1/3 rule, resulting in 

the following expression for the value of v at the next time step, 

"+2     "+I J 

The parameter h is the size of the time step, and y^ and y^ are initial estimates of v at 
2 

the half and full step, and are given by the following expressions derived from Taylor 

expansions about y„, 

h 



y x=yn+^f{yn*h) (4-7) 
2 

>»*1=>'»+A Ö/(j„,/n) + 0-Ö)/ J     ,,' 1>*      1 
IW--     n+- 

(4.8) 

The variable 0 is a weighting parameter that can be selected to optimize the accuracy of 

the numerical method [Ref. 16].   In SIMULINK®, it is the values of the function fiy,t) 

that are generated by the S-function when the integration routine calls with the proper 

flag. Thus, SIMULINK® provides the means of modeling any dynamic system for 

numerical simulation provided that the equations of motion are expressed as a system of 

first order ode's. It is important to note that the algorithm described above is only one 

variant of the rk family of ode solvers and that the actual routines utilized by 

SIMULINK® are somewhat more sophisticated. 

Before beginning a simulation with SIMULINK®, the user sets several parameters 

which control the execution of integration routine. The user must designate a maximum 

and minimum (time) step size, simulation duration (start and stop time), and a tolerance 

which establishes the maximum relative error. If the algorithm cannot decrease the 

marimum relative error without going below the minimum step size, a warning message is 

displayed. 
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V. MODELING NONLINEAR EFFECTS 

To include additional nonlinear terms into the overall model the equivalent energy 

expression representing the effect is simply added to the overall energy expression in the 

MAPLE® worksheet program. For example, to model a nonlinear flexbeam, a Duffing 

spring term can be added to the equation of motion of the k* rotor blade of the form 

For the Lagrangian derivation, which the MAPLE® program performs, the equivalent 

potential energy term is given by 

fa)S*-few (52) 

This term is simply added to the expression representing the potential energy of the k 

rotor blade.  To add nonlinear damping to the rotor blades or fuselage a term of the 

following form is added to the respective dissipation function 

vxxM <5-3> 

where Vx is the nonlinear hydraulic damping coefficient [Ref. 5]. 

The effect of lead-lag (flap) stops was also modeled by incorporating a simulated 

jump in lead-lag (flap) stiffness by use of Heaviside step functions in the potential energy 

expressions. For lead-lag stops the expression is 

where the Heaviside step function, H{r\ is defined as 

H(r)J°'   V<1 (5-5) 
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and z is the absolute displacement angle at which a rotor blade would engage the lead-lag 

(flap) stops, and K, is the effective increase in lead-lag (flap) stiffness. For programming 

purposes, expression (5.4) can be written in terms of the signum( ) function as follows 

-Ks£
2signum(C- 2)+-^ 2--Ksz

2sigmmi(c+z) - l^M sigmm(C-z) 

+ -Ks2
2 signing-2)--KJGsigmar{(;-2)--K£2 signum(C+2)        (5.6) 

♦^ 

where 

signum{x) = 77 (5.7) 

Thus, any structural or damping nonlinearity can be incorporated into the model by 

adding the appropriate energy expression into the MAPLE® worksheet, and then 

executing the worksheet to generate the updated code for incorporation into the 

SIMULINK® S-function. 
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VL SIMULATION RESULTS 

This section displays results of several simulations and demonstrates the unique 

capabilities and flexibility of the modeling method described in previous sections. Direct 

simulation allows analysis of any number of different configurations or scenarios, such as 

non-isotropic hub, one damper inoperative, or even simulated rotor blade damage. 

Though the time history plots in the following subsections do not indicate h, SMULINK 

offers the useful capability of being able to visualize the dynamics of a model as they 

progress, which can add valuable insight into the phenomenon being studied. 

A. SIMPLE MODEL 

The following table summarizes the parameters that can be set interactively for any 

simulation for the simple model. The table gives the representative nomenclature used to 

represent the parameter in the MAPLE® and S-function programs. The table is 

representative of a three bladed model. 

Table 6.1 Simple Rotor Model Program Nomenclature 

Parameter 

Rotor blade mass 
Fuselage effective 

mass in x and y 
direction 

Distance from hinge 
to center of mass of 

blade 
Rotor speed 
Hinge offset 

Angle at which lead- 
lag stops engage 

Azimuth phase angle 
of rotor blade 

As h Appears in MAPLE  and/or 
S-function code  

mb(l), mb(2), mb(3) 
M(1),M(2) 

Omega 
el 

Phi(l),Phi(2),Phi(3) 

Units 

mass 
mass 

length 

rad/sec 
length 
radians 

radians 
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Parameter As it Appears in MAPLE9 and/or 
S-function code 

Units 

Lead-lag linear 
damping coefficient 

Czeta(l), Czeta(2), Czeta(3) moment/ 
(rad/sec) 

Lead-lag nonlinear 
damping coefficient 

Vzeta(l), Vzeta(2), Vzeta(3) moment/ 
(rad/sec)2 

Fuselage linear 
damping coefficient 
in x and y direction 

c(l), c(2) force/ 
(length/sec) 

Fuselage nonlinear 
damping coefficient 
in x and y direction 

v(l), v(2) force/ 
(length/sec)2 

Lead-lag linear 
spring coefficient 

Ke(l), Ke(2), Ke(3) moment/rad 

Lead-lag nonlinear 
spring coefficient 
(Duffing spring) 

Kd(l), Kd(2), Kd(3) moment/rad3 

Lead-lag stop spring 
coefficient 

Ks(l), Ks(2), Ks(3) moment/rad 

Effective fuselage 
stiffness in x and y 

direction 

K(l), K(2) force/length 

Fuselage states 
initial displacement 

conditions 

xXLxYi length 

Fuselage states 
initial rate conditions 

xrXLxrYi length/sec 

Blade states initial 
displacement 

conditions 

xli, x2i, x3i rad 

Blade states initial 
rate conditions 

xrli, xr2i, xr3i rad/sec 
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Table 6.2 shows the basic simulation case for the parameters in table 6.1. These 

base values will serve as a starting point for each simulation, i.e. when a specific parameter 

is changed for a simulation, it is understood that all other parameters will be set to the 

base case values. 

Table 6.2 Parameter Settings for Basic Simulation Case 

mb(l) 
0.1 slugs 

mb(2) 

R 
10 ft 

0.1 slugs 
mb(3) 

0.1 slugs 
Omega 

170 radians/sec 

Phid) 
0 radians 

c(l) 
0 lbs/fps 

M(l) 
6.5 slugs 

el 
0.5 ft 

Pbi(2) 
2TC/3 radians 

d®_ 
0 lbs/fps 

Czeta(l) 
0 ft-lbs/(radians/sec) 

Vzeta(l) 
0 ft-Ibs/(radians/sec)A2 

Ke(l) 
0 ft-lbs/radian 

Kd(l) 
0 ft-Ibs/radianA3 

Ks(l) 
0 ft-lbs/radian 

Mg! 
6.5 slugs 

jt/12 radians 
Phi(3)    

4rc/3 radians 

v(D 
0 Ibs/fpsA2 

Czeta(2) 
0 ft-lbs/(radians/sec) 

Vzeta(2) 
0 ft-lbs/(radian/sec)A2 

Ke£L 
0 ft-lbs/radian 

Kd(2) 
0 ft-lbs/radianA3 

Ks(2) 
0 ft-lbs/radian 

«&  
0 lbs/fbsA2 

Czeta(3) 
0 ft-Ibs/(radians/sec) 

Vzeta(3) 
0 ft-lbs/(radian/sec)A2 

Ke(3) 
0 ft-lbs/radian 

Kd(3) 
0 ft-lbs/radian^ 

Ks(3) 
0 ft-lbs/radian 

K(l) 
113,000 lbs/ft 

xXi 
0ft 
xrXi 

I      0.5 ft/sec" 

xYi 
0ft 
xrYi 

Oft/sec 

K(21 
113,000 lbs/ft 

xli 
0 radians 

xrli 
0 radians/sec 

x2i 
0 radians 

xr2i 
0 radians/sec 

x3i 
0 radians 

xr3i 
0 radians/sec 

The basic case is intentionally set up with zero damping and with a rotor speed set 

approximately at the center of the regressing lead-lag mode instability region. The first set 

of simulations will demonstrate the system behavior when excited with an initial fuselage 

velocity as indicated in Table 6.2. Figure 6.1 and Figure 6.2 show the lead-lag time 
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histories and the fuselage center of mass trajectory (displacements are in feet) for the basic 

case. 

0.4 

S 0.2 c 
.2 
'■5 
2      0 

o 
B -0.2 
<D 
O 

J2 
°--0.4 .2 

'■v 
a 
S -0.6 
■o a 
o 

-0.8 

-1 

-1.2 

Rotor Blade Load-Lag Displacement Time Histories 
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Figure 6.1 Rotor Lead-lag Displacements for Basic Parameter Case Settings, Center of Self Excited 
Region. 

Unless otherwise specified, for plots of rotor blade motion, i.e., lead-lag and flap, 

the colors red, blue, and green distinguish the individual blades. 
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Trajectory of Fuselage Center of Mass 
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Figure 6.2 Fuselage Trajectory for Basic Parameter Settings, Center of Self Excited Region. 

As expected, Figures 6.1 and 6.2 show the rapid divergence of the model as a 

result of being in the center of the self excited region and perturbed with an initial 

fuselage velocity in the x-direction. The diverging spiral path of the fuselage center of 

mass is a characteristic result of the regressing lead-lag mode instability. 

Figure 6.3 and 6.4 show the corresponding results for operation below the self 

excited region. Figures 6.3 shows a beat or modulation of the blade response but no 

divergence. The beat phenomenon indicates the blade lead-lag motion consists of two 

dominant modes closely spaced in frequency.  The fuselage center of mass trajectory 

shown in Figure 6.4 shows an elliptical path with the major axis of the ellipse rotating 

about the zero displacement position. Both the beat phenomenon and the precession type 

motion of the fuselage seem to be a characteristic behavior of a system operating outside 
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the self excited region. It is interesting to point out that this behavior is also characteristic 

of spherical pendulums. 

Lead-Lag Displacement Time Histories 
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Figure 6.3 Rotor Leai-iag Time Histories, Rotor Speed Below Self Excited Region 
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Trajectory of Fuselage Center of Mass 
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Figure 6.4 Fuselage Trajectory for Basic Parameter Settings, Rotor Speed Below Self Excited 
Region 

Figures 6.5 and 6.6 show the results of a simulation where rotor speed was set 

above the self excited region. Again, the fuselage exhibits an elliptic whirling motion with 

the major axis of the ellipse rotating about the zero displacement position while the blade 

lead lag motion follows a beat pattern. 
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Lead-lag displacement time histories 

Figure 6.5 Rotor Lead-lag Time Histories, Rotor Speed Above Self Excited Region 
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Figure 6.6 Fuselage Center of Mass Trajectory, Rotor Speed Above Self Excited Region 

Figure 6.7 is the Coleman stability plot [Ref. 2] for the basic configuration. The 

red lines indicate the boundaries of the self excited region and the blue line marks the 
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center of the self excited region.   The X's indicate the operating points for the three cases 

shown in Figures 6.1 through 6.6. 

Coleman Stability Chart (Isotropie hub) 
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omegaA2*Lambda1+Lambda2 

0.5 

Figure 6.7 Coleman Stability Plot for Basic Case 

At this point, a comparison was made between the simulation model and a time 

history solution of Coleman's and Feingold's equations. Bramwell [Ref. 17] derives 

Coleman's and Feingold's equation in a form equivalent to that of the simulation model 

with the blade displacements expressed in the rotating coordinate system and the fiiselage 

displacements expressed in the fixed coordinate system. These equations were solved in 

the fixed coordinate system using an eigenvalue analysis and the solutions transformed 

back to rotating coordinate system. A comparison was then made with the lead-lag 

displacement time history of the simulation model. Figure 6.8 shows the result of the 

comparison using the parameters of the basic configuration with a moderate amount of 

damping added to rotor blades and fuselage. Figure 6.8 shows excellent agreement 
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between the two solutions with a significant departure between the two occurring only 

when displacements get very large. Thus, for the limiting case of an isotropic hub with 

linear spring stiflhess and damping, the above comparison offers some amount of 

verification as to the accuracy of the simulation model. 
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Figure 6.8 Comparison of Simulation Model to Coleman's Model 

Moving on from the basic results and model verification, some of the more 

interesting cases that were simulated will now be discussed. Figure 6.9 shows a 

comparison between a case where all blade lead-lag dampers are operating and a case 

where one damper is inoperative. The first plot of Figure 6.9 shows a rotor with all blade 

dampers operating, in the second plot, the blue damper is disabled by reducing the 

damping coefficient by two-thirds. As is evident from the plot, the very slightly unstable 

case with full damper operation is made highly unstable by failing one damper. 
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Figure 6.9 One Lead-Lag Damper Inoperative 

Figure 6.10 shows the results of simulating damage to a rotor blade by reducing 

the mass of the blue blade by 20%. The undamaged blades are forced to oscillate around 

a non-zero displacement position in order to compensate for the damaged blade, but the 

amplitudes of all the blade oscillations appear to be constrained. 
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Figure 6.10 Simulated One Rotor Blade Damaged 

Figure 6.11 shows the effect of enabling lead-lag stops in the model. The figure 

compares the time history of a blade with no stops with that of a blade with stops 

simulated at ±15 degrees. Figure 6.12 shows the corresponding fuselage displacements. 
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Comparison of Lead-lag motion with and without blade stops 
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Figure 6.11 Effect of Lead-Lag Stops 
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Figure 6.12 Fuselage Displacements with and without Simulated Lead-lag Stops 
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The objective of the next set of simulations was to examine the effect of a 

nonlinear flexbeam incorporated into a bearingless rotor design. The nonlinear behavior of 

the flexbeam was assumed to be that of a Duffing spring where the restoring moment is 

given by 

Ke is the linear stiffness and K4 the nonlinear stiffness. Simulations were conducted for 

several values of the nonlinear spring constant keeping the linear coefficient constant at 

22,000 ft-Ibs/radian Results are shown in Figure 6.13.   The primary effect of increasing 

the nonlinear spring constant is in the limiting of the amplitude of the lead-lag response. 

As is depicted in the Figure 6.13, the case for Kj= 0 is very unstable and a helicopter 

caught in ground resonance in such a configuration would most likely experience 

catastrophic failure. By adding the hardening (cubic) term, the unbounded growth in 

amplitude can be checked as is apparent from the responses for the cases of Kd=4E+5 and 

£r=8E+5.   As the amplitude increases, the magnitude of the nonlinear term becomes 

more influential and effectively changes the frequency of oscillation, shifting it outside of 

the unstable region and allowing the oscillations to decay. Once the amplitude decays to 

where the influence of the nonlinear term becomes small the cycle repeats itself. While the 

limiting amplitudes for the nonlinear cases of Figure 6.13 are still large for lead-lag 

displacements (on the order of 30 to 40 degrees), this limiting behavior may be enough to 

prevent destruction of an aircraft if ground resonance were to be excited.   In flight, when 

lead-lag displacements are small, the hardening effect of a nonlinear flexbeam would be 

negligible, and could be designed to act as soft inplane in order minimize hub moments. 

40 



c 

,X10 
Effect of Hardening Duffing Flexbeam on Lead-lag Response 

0.5 

Kd=0 
_Kd=4ii5_ 
Kd=8o5 

0.05 0.1 0.15 0.2 
Lead-lag Displacement (radians) 

0.25 

¥1 
ID 
E 

8- 
5-1 
■? 

**^ ,„^L s»rj\j\ ,A A 

0          0 2        0 4         0 6 0 8 1.2        1.4         1.6        1.8          2 
Time (sec) 

Figure 6.13 Effect of Hardening Duffmg Flexbeam on Lead-lag Response 

It is important to note that the elastic behaviors of the flexbeams modeled by the 

curves in the upper plot of Figure 6.13 are purely hypothetical and were selected 

arbitrarily in order to illustrate the effect that nonlinear elastic behavior could have on 

rotor system response and stability. 
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B. COMPLEX MODEL 

The complex model is based on a configuration used by Straub [Ref. 12]. The 

computer code nomenclature and parameter values for the basic case used to conduct 

simulations for this study is contained in Appendix F. Appendix F is an example of a the 

MATLAB® input file used for the complex model. This method of input, as opposed to 

the graphical interface masking feature used for the simple model [Ref. 15], was more 

convenient in the case of the complex model due to the large number of parameters. 

What follows are examples of some of the time histories generated from simulations 

completed with the complex model. 

Figures 6.14 and 6.15 show the flap and lead-lag response of the rotor to a 

fuselage roll perturbation (initial angular displacement about the fuselage x-axis). For this 

case the ground resonance was not excited and both the flap and lead-lag motions settle 

very quickly. Notice that the lead-lag displacement settles around a non-zero steady state 

position. This is due to the aerodynamic drag on the rotor blade, the modeling of which is 

discussed in the next section. 

The next set of figures show the results for the same configuration used for 

Figures 6.14 and 6.15, but the rotor rotational speed has been changed so that ground 

resonance is excited by the roll perturbation. Figures 6.16 and 6.17 show the flap and 

lead-lag response for this case, and Figure 6.18 shows the trajectory of fuselage pitch and 

roll displacements 
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Flap Response to Fuselage Roll Perturbation 
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Figure 6.14 Flap Response to Fuselage Roll Perturbation 

Lead-lag Response to Fuselage Roll Perturbation 
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Figure 6.15 Lead-lag Response to Fuselage Roll Perturbation 
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Flap Response to Fuselage Roll Perturbation (Ground Resonance) 
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Figure 6.16 Flap Response with Ground Resonance Excited 
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Figure 6.17 Lead-lag Response with Ground Resonance Excited 
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Fuselage Pitch and Roll Displacement Trajectory 
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Figure 6.18 Fuselage Displacement Trajectory with Ground Resonance Excited 

The next result, shown in Figure 6.19, is the lead-lag response with one damper 

inoperative. For this case, the system has enough inherent stability to settle out after the 

initial fuselage displacement. The undamped blade (blue blade) simply settles out at a 

higher amplitude, but this amplitude is small enough that the inertial forces that arise from 

the imbalance have a small effect. 
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Simulated One Damper Inoperative 
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Figure 6.19 Lead-lag Response with One Damper Inoperative 
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VIL INTRODUCING AERODYNAMICS TO THE MODEL 

Aerodynamic forces were derived using quasi-steady strip theory. Stall, 

compressibility, reversed flow, and wake effects are ignored, and induced flow is obtained 

from momentum theory. The results of the derivation are the aerodynamic moments about 

the blade binge in the flap and lead-lag directions. These moments are entered as 

generalized aerodynamic forces in the Lagrangian derivation.   The development of the 

aerodynamic equations was adapted from the approach utilized by Kaza and Kvatemik 

[Ref. 20] for a flap-lag stability analysis on rigid articulated blades. The main difference 

between their approach and the approach outlined in the following paragraphs is that 

fuselage motion and its influence on blade motion is considered here. 

The relative air velocity at a point on the k* rotor blade due to forward flight at 

any instant in time, expressed in inertial coordinates is 

{fj)z = M QRex+0ey +AQRez (7.1) 

The total velocity relative to a blade element is obtained if the above expression is added 

to the negative of the time derivative of the instantaneous position of the blade element. In 

inertial coordinates the total velocity is given as 

This velocity is expressed in blade deformed coordinates through the following 

transformation, 

where T\, T2, and T3 are given by equations (3.1) to (3.3).   (j^)    can also be expressed 

as 
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fäjw = URex - UTey - Upe: (7.4) 

Thus, from the components of the vector expression (7.4), the radial, tangential, and 

perpendicular components of the total velocity, with respect to blade deformed 

coordinates, are given. 

The lift and drag acting on an elemental section of blade are 

dL = -pacU2adr (7.5) 

1 (C \ 
dD = -pacU2 -±-\dr (7.6) 

2' V a 

where 

U = JUT
2+UP

2 (7.7) 

The angle of attack, a, is 

a = 0-tan_1 W = 0-f (7.8) 
\UTJ 

where 9 is the section pitch angle. The lift and drag are then transformed to give the 

resultant forces along the y and z axes of the blade deformed coordinate system, thus 

giving 

dF~ = -dL sin(^ ) - dDcos{^ ) (7.9) 

dF; =dLco^f> )-fl©sin(^) (7.10) 

To obtain the generalized aerodynamic forces from the above expressions, the principle of 

virtual work is applied for a flap - lag blade displacement sequence. To accomplish this 

the blade differential forces given by (7.9) and (7.10) are transformed to the blade 
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undeformed coordinate system since the generalized blade displacements, ß/t) and Q(t), 

are expressed in this frame of reference.   The transformation is as follows 

(^L = 
dF; 

dF9 

dF, 

= T3fc)T2(ßk) 

0 
dF~ y 

dF? 

(7.11) 

Applying the principle of virtual work, the generalized aerodynamic forces on the k rotor 

blade are 

KWW» '0Px Bu Bd 

Sß, 

te).-f (*). * / ^\     [ dpi 
Bu     \ 

Bu Bd 

8& 

= jjcos(OdFs 

rR 

(7.12) 

(7.13) 

where pBu Bd is the position vector of an arbitrary point on the deformed rotor blade 

elastic axis with respect to the blade undeformed coordinate system. 

To simplify the inclusion of aerodynamics into the model, the integral expressions 

for the generalized aerodynamic forces appearing in equations (7.12) and (7.13) will be 

evaluated by assuming the mean value of the forces, dFP and dFf, occur at the r = 0.7Ä 

radial position, and that this radial position also corresponds to the center of lift and drag 

on a rotor blade. With these simplifying assumptions, the resulting generalized 

aerodynamic forces are 

(M,)t=07#coteX^L™ (7.14) 

(Me\=We(dF,\._ (7.15) 
'r=0.7R 

The inflow ratio, A, and advance ratio, ju appearing in equation (7.1) are 
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(F sin or-v.) 

Vcosa 
" = -QR- (7-17) 

The induced flow, v,, in equation (7.16) is calculated by equating the integrated thrust to 

the thrust from momentum theory, leading to the result, 

CTQR 
v, =■ (7.18) 

'     2V//2+A2 

The thrust coefficient, Cr, is determined by adding the average total lift generated by each 

rotor blade over one rotor revolution and dividing the quantity, p n Q2R*. 

For this study, only a rotor-fuselage system in the ground resonance regime is 

considered, so the thrust coefficient and forward velocity were set to zero, giving an 

inflow ratio of zero, which corresponds to a steady state rotor blade pitch angle of 

{Ok )a = 0, assuming an uncambered blade. This simplifies things greatly for this study by 

eliminating the requirement to trim the rotor system for a certain aircraft weight and flight 

condition. The aerodynamics came into play in analyzing the effects active pitch inputs 

about a flat pitch condition on ground resonance stability. This will be discussed further in 

a later section. 
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Vm. MOVING BLOCK TECHNIQUE 

One of the drawbacks of performing direct numerical simulation of dynamic 

systems is that time histories of system degrees of freedom only offer qualitative 

information on the effect that certain system parameters have on system stability or 

performance. In order to quantify the effects of varying certain system parameters, such 

as rotor speed, flex-beam stiffness, and active control inputs, on rotor-fuselage stability in 

the ground resonance regime, a method was needed to estimate system damping levels 

from the system time histories.  Moving Block Analysis, a technique developed at 

Lockheed in the 1970's, is a digital method of analyzing a transient time history to obtain 

modal damping and frequency. The technique is first described in some detail by 

Hammond and Dogget [Ref. 18]. 

The technique is analytically based on the typical transient response of a second 

order system. Consider the following transient time history, 

y{t) = A e-*"J sin(fitf + 3) (8.1) 

where 

<o2=a>n
2(l-g2) (8.2) 

The finite Fourier transform of y(t) at the damped frequency, a>, from time rtor+ Tis, 

Fi^^l^Ae-^smiat + tye-^dt (8.3) 

After carrying out the integration and making the assumptions that £« 1, so con « a>, the 

magnitude of the Fourier transform can be written in the following form, 
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\F(a>)\ = ^-e-^ 
26) 

>+/« 
(8.4) 

where 

f{g) = -2e-«°T +e-^T +(l-e-*°T)gsm(2(a>r + &j)- 

e-?oT{\ - e-^T)g sin[2(ö>(r + f) + S )] 

Taking the natural logarithm of equation (8.4) yields 

(8.5) 

(8.6) 

4 

The last term in equation (8.6) can be expanded in a Taylor series to yield 

lnJF(fi;)| = -gcor + In! —] 

+ -ln[(<ö7)2 + (ö>7){sin(2(ör + & )) - sin(2[e>(r + 7) + S ])}] (8.7) 

2<yr + sin(2(ß)r + 5 )) - 3 sin[2(<y(r + T) + & )] 

fi>r+sin(2(<yr + &))- sin[2(ö>(r + 7) + & )] 

From equation (8.7) it can be seen that if ln|F(©)| is plotted versus r, the resulting curve 

wfll be the superposition of a straight line with slope - gm and an oscillatory component 

which oscillates about the straight line with frequency 2m . If h is assumed that Tis an 

integral multiple of the basic period of oscillation, such that 

2TTN 
T = 

CO 
(8.8) 

equation (8.7) reduces to 

ln|F(c?)| = -gar +-gsm{l((OT + &) + C) (8.9) 
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where C is a constant given by 

c-h^+ht-n-^ (8.10) 

From equations (8.9) and (8.10) it can be seen that if successive discrete Fourier 

transforms at a frequency a are performed for 0 < r < ts - T, where ts is the total signal 

length, a plot can be made from which the damping can be determined. It is this 

procedure which is the basis for the moving block analysis [Ref. 18]. 

For a sampled signal, the moving block method is applied by first estimating the 

frequency of interest embedded in the signal using a Fast Fourier Transform (FFT). A 

block length is selected consisting of Nb data points, and the moving block function, 

ln|F(fi>, T)| , is calculated for r = 0. The block is then shifted one data point (time step) at 

a time and the moving block function recomputed for r = »A/, where n = 0,1,2,..., N- 

Nb. The plot of lnl^o, rft versus x is fitted with a linear least squares fit, and the 

damping is estimated from the slope of the curve [Ref. 19]. 

For this study, a moving block analysis program was developed with MATLAB®. 

The m-file code is contained in Appendix E.  Moving block was applied in the code by 

adapting and combining the procedures outlined by Hammond and Doggert [Ref. 18] and 

Bousman and Winkler [Ref. 19].   The method used for computing the moving block 

function once the frequency and block size were determined was to evaluate the Fourier 

coefficients for the first time block with the following relations 

**(0 = ^Z/(* + r)cos^-^ (8.11) 
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2 ?»-' 
Kir) = i-^f{x^rWnkbX 

N, b   x=0 N„ 
(8.12) 

where 

kb=a>NbM (8.13) 

and/rf z) is the signal data (for the first block r= 0) . The Fourier coefficients at the 

next time step are then calculated using the following recursion relations, 

»4(r +1) = \at{T) + jj\f{Nb + r)-/(r)]|cos[^-] +*t(r)sin 
2nkb 

(8.14) 

'2** ^ (iitkh bk(T + l) = -\ak(T)+— [f(Nb + r)-f(r)] sin ^ + *t(r)cos^        (8.15) 

The magnitude of the natural logarithm of the moving block function is then given by 

HF(o>,r)] = ^h{at(T)2
+bk(r)2] (8.16) 

The accuracy and speed of the moving block analysis code is dependent on several 

factors. The frequency resolution of the FFT algorithm is inversely proportional to the 

signal length and sampling rate, or, 

A© = 
NAt (8.17) 

For the current study, signal frequencies will range from approximately 5 to 30 Hz, and 

sampling rates will be between 100 and 2000 Hz with the typical record lengths of 2 to 5 

seconds. The worst resolution considering these figures would be approximately 0.5 Hz, 

an error of 10% for the low frequency signal.   To compensate for this, a refinement 

procedure [Ref. 18] is incorporated into the code. Additionally, the FFT algorithm is 

optimized to operate on record lengths in powers of two. If the record length is not a 
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power of two, it is automatically padded with the required number of zeros, which 

degrades the accuracy of the frequency estimation. To remedy this, all signal lengths were 

controlled to be exactly in powers of two by adjusting stop time and the size of time steps 

when executing simulations. 

The moving block code developed for this study was specialized for handling uni- 

modal or bi-modal signals, i.e., signals with one to two dominant modes. For the bi-modal 

case, sufficient frequency separation must exist such that the resolution offered by the 

methods described above will be adequate enough for accurate damping estimates of both 

modes. A test signal of the following form was used to verify the accuracy of program, 

f(t) = Ax exp —Z—-    sin(2flo>j/) + A2 exp —*L?f2    sin(2;zö>2?)      (8.18) 

Parameter values were fixed to match the test case considered in Ref. 9, and were: A\ = A2 

= 1000, si = 0.01, g2 - 0.02, a>l = 8.0 Hz, and &2 = 6.0 Hz. The results of the moving 

block analysis on the test signal shown in Figure 8.1 is shown in Figure 8.2. The first plot 

of Figure 8.2 shows the resulting power spectrum generated by a FFT of the test signal. 

The second plot is the result of refining the FFT frequency estimates. The third plot is the 

crux of the moving block analysis where the negative of the slopes of the straight line least 

square fits give the damping ratios when divided by the corresponding damped 

frequencies of the particular mode. The damping and frequencies obtained from Figure 

8.2 are summarized in the Table 8.1. 
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Figure 8.2 Result of Moving Block on Test Signal 
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Table 8.1 Summary of Results for Moving Block Bi-modal Signal Test Case 

Parameter  —» 6>x ft *>2 & 

Test signal 8 Hz 0.01 6 Hz 0.02 
Moving Block Analysis 8.0314 Hz 0.0098 5.9535 Hz 0.0198 

From the results, it can be seen that the two modes of the test signal are 

sufficiently far apart in order to obtain reasonably accurate damping estimates. It is, 

however, important to note that as the frequency separation of a bi-modal signal decreases 

to approximately 5% [Ref. 19], accurate damping estimates will no longer be possible. 

Figure 8.3 shows the effect of varying rotor speed on first lead-lag mode damping 

as determined by a moving block analysis. The configuration used for Figure 8.3 is the 

basic configuration with a moderate amount of damping added to the fuselage and blade 

motions in order keep time histories within reasonable bounds when simulating inside the 

self-excited region. The initial excitation was provided by setting an initial fuselage 

displacement in the x-direction. The rotor frequency (abscissa in Figure 8.3) is non- 

dimensionalized by the fuselage natural frequency ( JTT
-
 )- The center of the regressing IK 

lead-lag mode instability should occur at a non-dimensional frequency 

1 
(8.19) 

1-- 

for a rotor system modeled with point masses.   For the basic configuration, the center of 

a 
instability corresponds to -r- = 1288, which is in good agreement with Figure 8.3. 

57 
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Figure 8.3 Effect of Varying Rotor Speed on First Lead-lag Mode Damping 

Figure 8.4 shows the results of a moving block analysis completed for rotor 

systems with different Deutsch numbers. Deutsch [Ref. 21] derives a criteria to determine 

the quantity of damping necessary to eliminate ground resonance instability through the 

full range of rotor speeds. The criteria requires that the product of the blade and fuselage 

damping parameters be greater than a certain parameter determined by the rotor-fuselage 

configuration. The rotor-fuselage configuration parameters for the case of the simple 

model with an isotropic pylon and rotor are given by the following, 

A,= R 

A      ^ A2= — 

A3=- 
Nm, 

l(Mp+Nmb) 

(8.20) 

(8.21) 

(8.22) 
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I = mhR
z (8.23) 

"b 

The damping parameters for the pylon and rotor blades are 

A=T S^— (8.24) 
(Mp + Nmb) top 

where 

;u=-S- (8-25) 

*> = &, 
(8.26) 

Deutsch's criteria for elimination of ground resonance is 

1M 
where 

D = -i^->l (8.27) 
A3/ 

1 + A/A1+A2-A,A2 

'- P^ (8.28) 

Here, the ratio of the damping product to the configuration parameter is defined as the 

Deutsch number, D . 
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Figure 8.4 Moving Block Results Parametized by Deutsch Number 
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DL ACTIVE CONTROL 

Several studies have addressed the problem of eliminating helicopter 

aeromechanical instabilities with active control. Straub [Ref. 12] and Straub and 

Warmbrodt [Ref. 13] use linear state space methods to investigate the effects of 

systematically varying feedback gain and phase in a closed loop system on the rotor- 

fuselage dynamic behavior. Takahashi and Friedmann [Ref. 22] move one step further by 

proposing a simple closed loop controller based on an optimal state estimator in 

conjunction with optimal state feedback determined from linear quadratic Gaussian (LQG) 

optimization techniques. Weller [Ref. 23] showed by experiment that a fixed gain 

controller which transforms fuselage states into swashplate inputs can greatly improve 

aeromechanical stability margins and eliminate unstable envelopes.  Wood, et at, [Ref. 

24] detailed the design and implementation of a higher harmonic pitch control system and 

demonstrated that it can be an effective means of vibration reduction. For the scope of 

this study a similar approach to the one used by Weller [Ref. 23] in his experimental 

investigation was incorporated into the simulation environment. 

In the most general case, the complex model allows rotor blade pitch inputs to be 

independent of one another so that the simulation of individual blade control is possible. 

The general form of a pitch input is, 

0k =(6»)isin(/in/ + a>i)+(^)icos(nn/ + #t) (9.1) 

where n is the harmonic number of the pitch frequency, (0s)k and \6e)k are the input 

phase and amplitude weighting parameters (for a first harmonic input they would 

correspond to longitudinal and lateral cyclic for the k* rotor blade), and <E>t is the 
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azimuthal phase angle of the kfc rotor blade. For the following active control example, 

active pitch inputs via a swashplate were simulated for the a three bladed rotor, thus, n 

was set equal to unity and the amplitude and phase weighting parameters for each blade 

were set equal to each other such that, 

fe),=fe)2=fe)3=4 (9-2) 

feM^fe),^ (9.3) 

Pylon pitch and roll position feedback was transformed into swashplate control 

inputs by the following fixed gain relationship 

0C 

IA 
(9.4) 

Stability measurements were made based on time histories of the orthogonal components 

of the rotor center of gravity offset given by 

x<* = (9.5) 

y« = - «s 

IM. 
*=i 

N 

I 
(9.6) 

where, 

W* =(cos(C)cos{/?Jt)cos(^)-sin(c)sin(n)X^)i +
cos(^)e (9-7) 

Wt = (C0S(^)C0S(Ä)sin(^)+*n(&)CO!(v'MRc!!)k + Mr^ (9.8) 
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These time histories contain both regressing and progressing mode contributions. The 

damping levels of these modes for various gain and phase settings were determined using 

the moving block analysis program described in a previous section. 

Initially, a simulation was run with the feedback gain and phase set to zero in order 

to get a baseline response. Figure 9.1 shows the results of the baseline response of the 

rotor center of gravity offset position. Figure 9.2 displays the results of performing a 

moving block analysis on the x^ signal of Figure 9.1. It can be seen in both figures that 

the center gravity offset signal contains both the regressing and progressing lead-lag 

modes. The progressing mode damps out relatively quickly and is of little influence after 

approximately 0.4 seconds of simulation (it can be seen that the high frequency component 

of the signals in Figure 9.1 "washes out" by 0.4 seconds). 
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Figure 9.1 Rotor eg. Offset For Baseline Case (K=0, $ =0) 
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Figure 9.2 Moving Block Results for Baseline Simulation (K=0, ty=Q) 
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The moving block analysis determined a damping ratio of -0.0247 (©-7. 1511 Hz) 

for the regressing mode and a damping ratio of 0.0230 (©=27.1916 Hz) for the 

progressing mode. The next step was to conduct the same analysis as was completed on 

the baseline case for a range of active control phase angles at fixed values of gain. 

Figure 9.3 displays the results of running a controller phase sweep at gain settings 

of K= 0.4 and i§T=0.8.  The case chosen is slightly unstable, with a no control damping 

ratio shown by the green line. The results demonstrate that stability can be improved by 

active swashplate control inputs and that the simulation techniques used in this study can 

provide a useful tool for predicting which gain and phase combinations would be required 

for a simple controller. 
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Figure 9.4 shows the SIMULINK® model utilized for complex model simulations 

and the active control analysis. 
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X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

A. CONCLUDING REMARKS 

A method for formulating and automatically coding the equations of motion of a 

coupled rotor-fuselage system by use of symbolic processing software and dynamic 

simulation software has been developed. The resulting mathematical models were used to 

perform simulations of coupled rotor-fuselage systems in ground resonance. Analysis of 

the dynamic and stability characteristics were quantified using the moving block technique. 

A simple rotor model was used to demonstrate essential characteristics of ground 

resonance and the effects that parameter variations such as rotor speed, flexbeam elastic 

behavior, damper failure, and rotor blade damage have on those characteristics. A more 

complex model, adding fuselage pitch and roll and rotor blade flap degrees of freedom, 

was used to demonstrate how the modeling technique could be used to explore the effect 

of active rotor control on ground resonance. The modeling technique proved to be a very 

powerful tool in that it eliminated the time consuming process of manually deriving and 

coding the very complex equations of motion of a multi-degree of freedom rotor system 

into a dynamic simulation environment.   By integrating SIMULINK® into the process, 

with its versatility in analyzing dynamic systems, the technique has direct application to the 

design of modern damperless rotor systems. 
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B. RECOMMENDATIONS FOR FUTURE RESEARCH 

1. Addition of rotor blade torsional degrees of freedom to overall model. 

2. Addition of geometric characteristics such as pre-cone, pre-sweep, offset hinge 

inclination, elastic coupling (pitch-lag, lag-flap, etc.). 

3. Addition of unsteady aerodynamics such as a finite state wake model or 

dynamic inflow model. 

4. Incorporation of a trim routine so the model can be used for hover and forward 

flight aeromechanical stability analysis. 

5. A comprehensive study of active control methods using the developed 

modeling technique, including optimization techniques (such as LQR and 

LQG) and individual blade control. 

6. Validation of simulation results with experiment. 
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APPENDIX A 

(MAPLE WORKSHEET) 

EQUATIONS OF MOTION FOR A HELICOPTER IN GROUND RESONANCE 
CONSIDERING 4 FUSELAGE DEGREES OF FREEDOM AND ROTOR BLADE FLAP AND 

LEAD-LAG DEGREES OF FREEDOM 

> restart: 
> with(linalg): 
Warning,   new definition  for norm 
Warning,   new definition  for trace 
> diffl:=(arg)->map(diff,arg,t) [ 

[  
[ Define coordinate transformations: 
[  

> psi:=Omega*t+Phi[k]; 

> T3:=alpha->matrix(3,3,[cos(alpha),sin (alpha),0,-sin(alpha),cos(alp 

ha) , 0,0,0,1 ]) ; 

T3 := a -» matrix(3, 3, [cos(a), sin(a), 0, -sin(a), cos(a), 0, 0, 0, 1 ]) 
> T2:=alpha->matrix(3,3,[cos(alpha),0,sin(alpha),0,1,0,-sin(alpha) ,0 

,cos(alpha)]); 
T2 := a -» matrix(3, 3, [cos(a), 0, sin(a), 0, 1, 0, -sin(a), 0, cos(a)]) 

> Tl:=alpha->matrix(3,3,[1,0,0,0,cos(alpha),sin(alpha),0,-sin(alpha) 

,cos(alpha)]); 
77 := a _* matrix(3, 3, [ 1, 0, 0, 0, cos(a), sin(a), 0, -sin(a), cos(a)]) 

> Ml:=transpose(multiply(Tl(r[l](t)),T2(r[2](t)))); 

~cos(r2(/))   -sin(r,(0)sin(ra(/)) -cos(r1(r))sin(i-a(/)) 

Ml:=        0                  cos(ri(/)> -sin^CO) 

_sin(r2(0)     sin(r!(0)cos(r2(0) cosO^/)) cos(r2(0)_ 
> M2:=transpose(T3(psi)); 

"cos(%l)   -sin(%l)    0" 
M2:=  sin(%l)    cos(%l)    0 

0 0 1. 

%1 :=Q.t + ®k 

> M3:»transpose(multiply(T3(zeta[k] (t)),T2(beta[k] (t)))); 

"cos(C,(0)cos(ß;X0)   -sin(^(0)cos(ß/c(0)   -sin(ßt(0)" 

M3= sin(C,(0) cos(&0) ° 
cos(Cfc(0) sin(ß,(0)     -sin(^(0) sin(ßÄ(/))     cos(ß,(0). 
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> M4:=multiply(T3(zeta[k] (t)) ,T2(beta[k] (t)) ,T3(psi) ,Tl(r[l] (t) ) ,T2( 
r[2] (t))> : 

Energy expressions for kth rotor blade 

Kinetic energy of kth blade (TBk) 

> rhoFI_I:=vector([u[l](t),u[2](t),0]): 
> rhoHF:=vector([0,0,h]) : 
> rhoHFJE: »multiply(Ml,rhoHF): 
> rhoBuH:=vector([el,0,0]) : 
> rhoBuH_I: »multiply (Ml ,M2 , rhoBuH) : 
> rhoPBd:=vector([R,0,0]): 
> rhoPBd_I: »multiply (Ml, M2,M3,rhoPBd): 
> rho:=matadd(rhoFI_I,matadd (rhoHF_I ,matadd (rhoBuH_I,rhoPBd_I))) : 
> V:=diffl(rho): 
> Vsqr:=V[l]A2+V[2]A2+V[3]A2: 
> TBk:=l/2*mb[k]*Vsqr; 

1 
TBk=-mbb 

rrr d        ) d        } 
~Ui(t)  + sin(r,(0)  -rx{t)   sm(r2(t))h 

\ot        J \ot        J 

■cos(ri(0)cos(r2(0)^—>2(0 
d \      f 

h + 
\ 

fd        ) 
-sin(r2(0) I rr2(0J cos(%3) - cos(r2(0) sin(%3) Q 

r \ (d      \ d 
- cos(r.(0)  7>'t(0   sin(r3(0) sin(%3) - sin^O) cos(r2(0) [jMO   sin(%3) 

\        ff fd        ^ 
- sin(rj(0) sin(r2(0) cos(%3) Q el + -sin(r2(0)  -/2{t)  cos(%3) 

VV Kot        J 

- cos(r2(0) sin(%3) Q - cos^CO) rZri(0\ sin(r2(0) sin(%3) 

- sinC^CO) cos(r2(0) (rra(0   sin(%3) - sin^CO) sin(r2(0) cos(%3) QJ cos(^(0) 

cos(ß*(0) - (cos(r3(/)) cos(%3) - sin^O) sin(r3(/)) sin(%3)) sin(^(/)) %2 cos(ß,(0) 

- (cos(r2(0) cos(%3) - sin^f)) sin(ra(0) sin(%3)) cos(^(0) sin(ßA.(0) %1 + 

fd ) 
sin(r2{ 0)T >'2( 0   sin(%3) - cos( ra( 0) c°<%3) Q 

fd        } fd        \ 
- cos(r.(0)  7>'i(0   sin(/-2(0) cos(%3) - sinO'^O) cos(r3(0)  7^(0  cos(%3) 

\ot       J ^0l       J 

+ sin(r,(0) sin(r2(0) sin(%3) fi j sin(^(0) 
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+ (-cos(r2(0) sin(%3) - sin^CO) sin(r2(0) cos(%3)) cos(Cfe(0) %2 

fd } 
+ sm(ri(t))  -r^t)   sin(r2(0)cos(C,(0)sin(ß/c(0) 

\dt       J 

fd } 
- cosir^t)) cos(r2(/)) (J^2(0j cos(C/c(0) sin(ß,(0) 

+ cos(/«!(/)) sin(r2(0) sin(^(0) %2 sinCß^O) 

- cos(^(0) sin(r2(0) cos(^(/)) cos(ßt(/)) %1 
V 

7? 
/ 

/ >\ ^ 

^"JVVJ  ^'^"la 

\ 

sin^CO) -rl(t)\sm(%3)el + cos(rl(t))cos(%3)Qel + 

—«2(o -coswo)!"^') 

V 

h 

-sin(r,(0)  T'-iCO   sin(%3)cos(C,(0)cos(ß,(/)) 

+ cos(/-!(0) cos(%3) D cos(C*(0) cosO^O) - cos(r,(0) sin(%3) sin(^(/)) %2 cos(ßA(0) 

- cos(/-i(0) sin(%3) cos(Cfc(0) sin(ß/c(0) %1 - sin(r,(0) [j/^j cos(%3) sin(^(0)  . 

- cos(rx(t)) sin(%3) a sin(C*(0) + cos^/)) cos(%3) cos(Q(/)) %2 

+ sin(^(0) %2 sin(ß/c(0) sin(r,(/)) - cos^CO) cos(ß/c(0) %1 sin^/)) 

cos(Cfc(0) sin(ß,(0) 008(^(0) [-^i(0 
\\ "v 

7? + -sin(rt(0) [J/iiO \oos(r2(t))h 
^ \(Jl J 

d 
cosir^t)) sin(r2(0) [jt

r2(0 h + 

\dt 

cos(r2(/)) I — r2(Oj cos(%3) - sin(r2(0) sin(%3) D 

'5 
+ 008(^(0)  ~rx{t)   cos(r2(/)) sin(%3) - sin^/)) sin(r3(/)) I ~r2(0 I sin(%3) 

+ sinCr^O) cos(r2(0) cos(%3) Q 
(( 

eJ + 

d 

cos(r2(t))\jtr2(t) cos(%3) 

- sin(r2(/)) sin(%3) a + cos^/)) I —^(Oj cos(r2(/)) sin(%3) 

fd } 
- sinCr^O) sin(r2(/)) T>'2(0   sin(%3) + sinO'i(O) cos(r2(f)) cos(%3) Qj cos(^-(0) 

cos(ßfc(/)) - (sin(r2(0) cos(%3) + sin(r,(/)) cos(r2(0) sin(%3)) sin(^(0) %2 cos(ßA(/)) 

- (sin(r2(0) cos(%3) + sin^CO) cos(r2(/)) sin(%3)) cos(^(0) sin(ßfc(0) %1 + 

-cos(r2(0)  ~r2{t)  sin(%3)-sin(r2(/))cos(%3)n 
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+ COSTCO)  -r^t)   cos(r2(0) cos(%3) - sin(/^(0) sin(r2(/))  -r2(t)  cos(%3) 
\dt 

- sinO^O) cos(r2(/)) sin(%3) Q   sin(^(/)) 

\dt 

+ (-sin(ra(/)) sin(%3) + sinO^)) cos(r3(0) cos(%3)) cos(^(0) %2 

- sinC^CO) -rx(t)  cos(r2(/)) cos(C,(0) MU*)) 
\ot       J 

- 003(^(0) sin(;;2(/)) |^-^(0J cos(C,(0) sin(ß/c(0) 

- cos(r,(r)) oos(r2(/)) sin(Q(0) %2 sin(ß,(0) 
"^ 

R + 008(^(0) cos(r2(0) cos(^(0) cos(ß,(0) %1 

%1 :=-ß,(0 

%3 := Q t + ®k 

c  
[ Potential energy of kth blade (UBk) 

[  
[ > UBkl:=l/2*(beta[k] (t)A2*kf1[k]+zeta[k] (t)A2*kll[k]) : 
[ > UBk3:=l/4*(beta[k] (t)A4*kf3[k]+zeta[k] (t)A4*kl3[k]): 
> UBk:=UBkl+UBk3; 

[  
[ Dissapative energy of kth blade (DBk) 

[ 
> DBk:=1/2*diff(beta[k](t),t)A2*cf[k]+l/2*diff(zeta[k](t),t)A2*cl[k] 

1 
DBk := - 

2 

r \i Id 

\dt m ^-2{jtw cl. 

[  
[ Energy expressions for fuselage 
[  

[ Kinetic energy of fuselage (IT) 

[  
[> TFt:=l/2*(diff (u[l] (t) ,t)A2*M[l]+diff (u[2] (t) ,t)A2*M[2]) : 
[> TFr:=l/2*(diff (r[l] (t) , t) A2*Ill+Hi ff^r [2] (t) , t) A2*I22-2*diff (r [1] ( 



[      t),t)*di£f(r[2] (t),t)*I12) 
> TF:=TFt+TFr; 

TFr 

r 

{- 

d 

\2 \(d 
«l(0     Ml+n    ^"2(0 

\ / 

TMO   TMO \dt \dt 

2\dt 

112 

1 
M„+- 

d 

2\dt 
r\(t) I1J+- 

d 

.a/'2 >'2(0 122 

[  
[ Potential energy of fuselage (UF) 

[  
[ > UFt:=l/2*u[l] (t)A2*KTl+l/2*u[2] (t)A2*KT2: 
[ > UFr:=l/2*r[l] (t)A2*KRl+l/2*r[2] (t)A2*KR2: 

> UF:=UFt+UFr; 

UF-=~ux{t)KTl+-u2{t)2KT2 + -rl(t)
2KRl+-r2{t)2KR2 

2 2 2 £ 

[  
[ Dissapation energy of fuselage (DF) 

[  
[> DFtv:=l/2*diff (u[l] (t) ,t)A2*CTl+l/2*diff(u[2] (t) ,t)A2*CT2: 
[> DFrv:=l/2*diff(r[l] (t) , t) A2*CRl+l/2*diff (r [2] (t) , t) A2*CR2 : 

> DFth:=l/2*diff(u[l] (t),t)A2*abs(diff(u[l] (t) , t)) *VTl+l/2*diff (u[2] 
(t) ,t)A2*abs(diff (u[2] (t) /t))*VT2: 

> DFrh:=l/2*diff(r[l](t),t)A2*abs(diff<r[1](t),t))*VRl+l/2*diff(r[2] 
(t) ,t)A2*abs(diff (r[2] (t) , t) ) *VR2 : 

> DF:=DFtv+DFrv+DFth+DFrh; 

DF:= 
d \2 id \2 

-M,(0      CTJ+-   -K2(0 
\dt 

\dt 
f A 

+ ■ 

J 

I 

) 
\2 

2\dt 

1 
CT2+- 

(d 

2\dt 
rx(t) 

1 

d 
— u,(t) 
dt lV } 

3t 
r2(0 

dt 
Ut) 

VT1+- 

VR2 

-(- 
2\dt 

\2 

«2(0 
a 
dt  2V } 

CR1 + 

VT2+- 
2 

.dt        J 
C 

\dt 
rx{t) 

CR2 

d 
VR1 

[  

[ Aerodynamics (Generalized Aerodynamic Forces) 

[  
> Vair :=vector ([mu*Omega*R, 0 ,Omega*lambda*R]) / 

Vair:=[ixnR,0,n'kR] 
[ > V_I_t:=matadd(-V,Vair) : 
[ > V_Bd_t:=map(simplify,multiply(M4/V_I_t)) : 
[ > UR:=V_Bd_t[l] : 
[ > UT:=-V_Bd_t[2] : 
[ > UP:=-V_Bd_t[3]: 
[> UU:=sqrt(UPA2+UTA2): 
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[> aoa:=theta[k]-arctan(UP/UT): 
[ > dFbeta:=l/2*rhol*a*c*(aoa*UU*UT-cdO/a*UU*UP) : 
[ > dFzeta:=-l/2*rhol*a*c*(aoa*UU*UP+cdO/a*UU*UT) 

> Mbeta k:=0.7*RA2*dFbeta*cos(zeta[k](t)); 

Mbeta k := .3500000000 
f f 

KpXac 

%1 :=Q.t + ® 

Qk - arctan 
'%2^ 

v%3y 
V%22 + %32 %3 

cd0*j%22 + %32 %2 
a 

cos(C,(0) 

%2 :=i? cos(C(0)  -ß/XO  + cos(r2(0) sinCp^O) sin(%l) sin^/)) C1XR 
\ot        J 

+ sin(ß/c(0) cos(%l) sin(r2(0) ^ XR - sin(pA(0) sin(%l) cos^f)) [j^hiO 

d 
- cos(ß,(0) sin(r!(0) [~«2(0J + sin(r2(0) sin(ß/c(/)) sin(%l) sin^CO) ^~»i(0 

- sinCß^O) cos(%l) cos(r2(0)  ~"i(0  - sin(r3(/)) cos(ßA(/)) cos^CO)  ~ «i(0 
.5/ ^ ' v 

cos(r3(0) cos(ßfc(/)) cosCr^O) n ?l /? + cos(ßt(0) cos^O) ^ 
a •\ 

r2(0   cos(°/ol) 
,dt iV V 

ra     "j fa     "i 
+ coscp^o) rri(0 sin(%1)e7 + cos(ß*(0)-K k/iCO cos(%1) sin<^(0) va^     j \oi     J 

a r 
+ sinCß^O) sin(%1)  Tri^)   h + sin(ß/XO) cos(%l) 008(^(0) [jMO \ut J \Ol 

a 
h 

+ sin(p,(/)) sinW/)) i? sin(C,(0) ^~ra(/); 

a 
+ cos(%l) £ cosC^CO) I —/-2(0J cos(Ct(0) 

Ta      > 
+ sin(%l)i?  -^(0   cos(CA(0) + sin(ßfc(0)^sin(Q.(0)^ 

va/      y 
fa      ^ 

+ sinCP^O) cos(%l) cos(ra(0) |x Q/2 - cos(ß/c(0) cosO^O)^ sin(^(0) |^ra(0J sin(%l) 

- sin(/-2(0) sin(ßA.(0) sin(%l) sin(rj(0) |i Hi? + sin(r2(/)) cos(ßfc(0) cos^CO) H ß-R 

fa     "i 
%3 := sin(Cfc(0) cos(ßÄ(0) sin(%l) k"''i(0  h + cos(^(/)) e/ H + cos(ßt(/)) R Q 

+ i? -C,(0  +sin(C,(0) cos(ß,(/)) cos(%l) cosCr^O) 
va^      J 

a 
a/ 2V 

\ 

A 
y 

sin(p,(/))7? I -r{(()   cos(%l) - sin(C,(0) sin(p,(0)  ~''i(0 j sin(%l) «7 
va^      j 

1'a      1 
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+ cos(C,(0) el sin(/',(/))  ~r2(t)   + cos(C,(0) sin(%l) cos^/))  ~r2(0 
.dt 

cos(^(0) cos(%l) -r,(0  A - sin(C/f(0) sin(ß,(/)) cos^O) ^  -/*(0  cos(%l) 
,dt 

+ sinCß^O) cos(/-,(/))i? hrr2(0   sin(%l) + sin^f)) cos(ßt(/))i?  ~r2(0 
Vö/ 

/" 
- cos(r2(/)) cos(^(0) sin(%l) I T»i(0 I + cos(ra(0) sin(^(0) c<>s( ß*(0) cos(%l) |i D R 

+ cos(r2(0) cos(^(0) sin(%l )ixQ.R 

- sin(/"2(0) sinC^O) sin(C,(/)) cos(ßfc(0) sin(%l)fj. Q* 

+ sin(r2(0) sinCrjCO) cos(^(0) cos(%l) |i Qi? 

- sin(r2(0) sin(C/c(0) sin(ß,(0) cos^O) [ißÄ 

- cos(r2(0) sin(C,(0) cos(ß,(0) cos(%l) [J^iO 

+ sin(r2(0) sinCr^O) än(^(0) cos(ß*(0) sin(%l) [- «,(/) 

- sin(r2(/)) sinCr^O) cos(C,(/)) COS(%1)^-II,(/) 

+ sin(r2(0) sin(C,(0) än(ß,.(0) cos^O) I ~»i(0 

/ a 
- cos^CO) sin(Cfc(0) cos(ß/f(0) sin(%l) |^-M2(0j 

f5 "l (d 
+ cos(r,(0) cos(CA-(/)) cos(%l)  -M2(0  +sin(^(0) sin(ß/c(0) sin(r,(0)  Tw

2(0 va/ 
+ sin(r2(0) sin(Cfc(0) cos(ßfc(/)) cos(%l) Q XR + sin(r2(/)) cos(^(0) sin(%l) O Xi? 

+ cos(/2(/)) sinCr^O) sin(^(/)) cosCß^O) sin(%l) Q XR 

- cos(r2(0) sin(r,(/)) cos(^(0) cos(%l) Q XR 

+ cos(r2(0) sin(C/c(0) sin(ß/c(0) cos^O) Q XR 
" > Mzeta_k:=0.7*RA2*dFzeta; 

Mzeta_k := 
f f 

-.3500000000 i?2 pi a c 

%1 :=n* + o. 

9^. - arctan 
'%3^ 

l%2;j 
V%32 + %22 %3 + 

cdO<J%32 + %22%2 

a 

%2:=sin(C/X0)cos(ß,(O)sin(%l)|-rl(0JA + cos(Cfc(0)e-/n + cos(ßfc(0)^^ 
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r 
+ sin(CA.(0) C0Sl 

fa        ' -sin(ß,(0)^[-^(0 

Kß*(0) cos< 

\ 

5(%l)cos(^(0)[-^2(Oj A 

J(%1 ) - sin(C,(0) sin(ß,(/)) |^>'i(Oj sin(%l)el 
J 

cos( 

(d 
+ cos(C,(0)^sin(r1(0)[-/'2(0^ 

ra 
\ .dt 

r2(t) + cos(^(0)sin(0/ol)cos(r1(0) 

\ 

A 
/ 

(8        s] (8        ") 
- cos(^(0) cos(%l) I —rt(OJ h - sin(C/f(0) sin(ß,(/)) cos^/)) el (^(OJ cos(%l) 

fa      ^ fs      1 
+ sinCß^O) cos(r,(/)) R ~^(0 I sin(%l) + sin(r,(/)) cos(ß,(0) R {J^iO^ + sin| 

-cos(/-2(0) 

+ cos( 

(3 MMO) vosO^t))R\jtr2(t) 

/-2(0)cos(C/c(0)sin(%l)[|Wl, v    .... . 

+ cos^r2(/)) cos(^(0) sin(%l) |i QR 

- sin(ra(0) sin^O) sin(C,(0) cos(ß,(0) sin(%l 

+ sin(r2(0) sin( r\(t)) cos(^(/)) cos(%l )|iftP 

- sin(r2(0) sin(C,(0) sin(ß,(0) cos^O) L 

in(%l) + sin(r,(/)) cos(ß,(0)^[-^(0^ 

h(t) 1 + cos(r2(0) sin(C/c(0) cos(ß,(0) cos(%l) n Qi? + cos(r2(0) 

"« i(0 J 
f \ 

\ dt 
u 'i(0 

J 

i(ß,(0) 

- cos(r2(0) sin(Cfc(0) cos(ß,(0) cos(%l) ^~ 

+ sin(r2(0) sin(r,(0) sin(C,(0) cos( ß,(0) sin(%l) 

- sin(r2(0) sinCr^O) cos(QXO) cos(%l) |j£«i(0^ 

+ sin(r2(0) sin(C,(0) MM')) oos^t)) [~"i(Oy 

■x(0) sin(C,(0) cos(ßt(0) sin(%l) [^(t)^ 

fa      1 fa 
^(0) cos(C,(/)) cos(%l) I - i/a(Ol + sin(C,(0) sin(ß*(/)) sin^CO) [~> 

/•-\\ „:„/,>- /,\\ „„„/a /y^ o^n/'O/.l \ O 1   P J. oinO (i\\ r.ni(r.(t}\ sin^/nl "1 

• cos(r1 

+ cos(r1(0)cos(^fc(0)cos(%l)l^i/a(Oj + sin(Ct, ,,     ., 

■s(ß*(f)) cos(%l )QXR + sin(r2(0 

n(^(0) cos(ß^(0) sin(%l) fl A.Ä 

'a 
«3(0 

A 

y 

+ sim 

>2(0) sinCr^O) sin(C,(0) cos(ß,(0) sin(0/ 

- cos(r2(0) sinCr^)) cos(^(0) cos(%l )QXR 

+ oos(r2(0) sin(^(0) sin(ß "^ ontr.ftW O 1; 

i?cos(C,(0)[-ß/XO 

sin(r2(0) cos(Cfe(0) sin(%l) H X.Ä 

7? 

%3 

0)sin(C,(0)sin(ß/t(/)) 

+ cos(/-2(0) sin(ßfc(/)) sin(%l) sin(r] 
J 

•!(/)) QXi? 
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+ sinCß^O) cos(%l) sin(A-3(0) &XR- sin(ß*(0) sin(%l) cos^CO) [~"2(0 

(Q \ (d 
- cos(ß/c(0) sin(r,(0)  7«3(0   + sin(r2(/)) sin(ßÄ(/)) sin(%l) sinfoCO) I -ti^t) 

<dt 
d 

sin(ß^.(0) cos(%l) cos(r2(0)   "«iCO   - sin(r3(/>) cos(ß&(/)) cos(r,(/))  ~«i(0 
\dt 

- cos(r2(0) cos(ßA,(0) cosir^t)) QXR + cos(ß*(0) cos(rj(0) el I "^(O I cos(%l) 

+ cos(ß,(0) -r,(t)  sin(%l) e7 + cos(ß,(0)^ "^(O  cos(%l) sin(C,/0) 
,5/ dt 

+ Mn(ß^O) sin(%l)  T/"i(0   * + sinCß^O) cos(%l) cos^O) I ^(O 
Kdt 1V ') Kdt 2" ') 

h 

+ sin(ß,(0) sin(r,(/))Ä sin(Cfe(/))  ~/2(0  + cos(%l )i? cos^O) 7/2(0 I cos(C*(0) 
Vdf 2V V 

) 
J 

d 
+ s\n(%\)R  -r,(/)   cos(^(0) + sin(ßjt(0)^sin(^(0)ß 

rs 
+ sinCß^O) cos(%l) cos(r2(0) \iClR- cos(ß/c(0) cos(r,(/))/? sin(C,/0) (j^'^ sin(%l) 

sin(r2(0) sin(ßt(0) sin(%l) sin(r,(/)) [xQR + sin(r2(0)cos(ßA.(0) cos^O) H^^ 
[  
[ Derivation of equations of motion by Lagrangian method 

[ This section defines vectors of displacement degrees of freedom, their rates and accelerations. 
[> DOFF: = [u[l] (t) ,u[2] (t) ,r[l] (t) ,r[2] (t) ] : 

> N: =3; Choose number of rotor blades 

N:=3 

[ > DOFB: = []:ThetaB:=[]: 
> for  i   from  1   to N do 
> DOFB: = [op(DOFB),beta[i] (t) ,zeta[i] (t)] : 
> od: 
> DOF:=[op(DOFF),op(DOFB)]; 

DOF := [Wl(0, u2(t), rx(t), r2(t), ß,(/), Ct(0, ß2(0, C2(0, P3(0, C3(01 
> dDOF:=diffl(DOF)/ 

|M,(o,|»2(o,|ri(a^2(o,|ß1(o,|c,w4ßaW,|«o,|ß3(o,|c3W 
|~ > ddDOF:=diffl (dDOF) ; 
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ddDOF:-- 

J„1(0,^!(0,^1(0,^2(0,fß1(0|ct(0,Jw0,|«0,fß3(0,|c5« 
This section defines transformations between time dependent and independent notation in terms of 

substitution sets. 
[> setA:={}:setB:={}:setC:={}: 
[> setD:={}:setE:={}:setF:={}: 
[> DOFq:=[]:dDOFq:=[]:ddDOFq:=[]: 
> for i from 1 to vectdim(DOF) do 
> DOFq: = [op(DOFq) ,q[i]] : 
> dDOFq:=[op(dDOFq),dq[i]]: 
> ddDOFq:=[op(ddDOFq),ddq[i]]: 
> setA:=setA union {ddDOF[i]=ddDOFq[i]}: 
> setB:=setB union {dDOF[i]=dDOFq[i]}: 
> setC:=setC union {DOF[i]=DOFq[i]}: 
> setD:=setD union {ddDOFq[i]=ddDOF[i]}: 
> setE:=setE union {dDOFq[i]=dDOF[i]}: 
> setF:=setF union {DOFq[i]=DOF[i]}: 
> od: 
> setl:=setA union setB union  setC: Substitution set to go from dependent to 

independent 
> set2:=setD union setE union  setF: Substitution set to go from independent to 

dependent 
[ This section combines all of contributions to the terms of the Lagrange equation. 
[ > T:=TF: 
[> U:=UF: 
[ > D1:=DF: 
[ > GF: = [0,0,0,0]: 
> for i from 1 to N do 
> T:=T+subs(k=i,TBk): 
> U:=U+subs(k=i,UBk): 
> Dl:=Dl+subs(k=i,DBk): 
> GF:=[op(GF),subs(k=i,Mbeta_k),subs(k=i,Mzeta_k)]: 

u> od: 
[ This section carries out the differentiation operation of the Lagrange equation one term at a time 
[> Temp:=subs (setl,T) : 
> for i from 1 to vectdim(DOF) do 
> tempi:=diff(Temp,dDOFq[i]): 
> temp2:=subs(set2,tempi): 
> temp3:=diff(temp2,t): 
> Ll:=subs(setl,temp3): 
> L2:=diff(Temp,DOFq[i]):    Page io 



> L3:=diff(subs(setl,U),DOFq[i]): 
> L4:=diff(subs(setl,D1),dDOFq[i]): 
> GFq:=subs(setl,GF[i]): 
> EOM[i]:=L1-L2+L3+L4-GFq: 

_ > od: 
[ This section formats the equations of motion into the form A d2x/dt2 = f 

> A:=matrix(vectdim(DOF),vectdim(DOF)); 

A:=may(l.. 10,1.. 10, [ ]) 
> for i from 1 to vectdim(DOF) do 
> for j from 1 to vectdim(DOF) do 
> A[i,j]:=coeff(EOM[i],ddDOFq[j]): 

> od: 
> od: 

[ > setZ:={}: 
> for i from 1 to vectdim(ddDOFq) do 
> setZ:=setZ union {ddDOFq[i]=0}: 

> od: 
> f:=array(l..vectdim(DOF)); 

/:=array(l.. 10, [ ]) 
> for i  from 1  to vectdim(DOF)   do 
> f[i]:=-eval(subs(setz,EOM[i])): 
> od: 
This section makes a change of notation so equations are compatible with standard MATLAB notation 
for state variables and inputs 

[> xl: = [] :xldot:=[] : 
[> for i from 1 to vectdim(DOF) do xldot:=[op(xldot),x[i]] od: 
> for i from vectdim(DOF)+1 to 2*vectdim(DOF) do xl:=[op(xl),x[i]] 

od: 
[> setX:={}: 
> for i from 1 to vectdim(DOF) do 
> setX:=setX union {dDOFq[i]=xldot[i]}: 
> setX:=setX union {DOFq[i]=xl[i]}: 

> od: 
> setX; 
{q% = xw dq% = x8, q6 = x16, dq1 = x7, q7 = x17, dq9 = x9, q9 = x19, dqw = x10, q{0 = x20, dq5 = x5, 

Is = 3c15, dq6 = x6, q2 = xn, dq3 = x3, q3 = x13, dq4 = x4, qA = xl4, dqx = xu qx = xu, dq2 = x2} 
> setXl: = {abs(l,x[l])=0,abs(l,x[2])=0,abs(l,x[33)=0,abs(l,x[4])=0}; 

setXl := {abs( 1, x3) = 0, abs( 1, x4) = 0, abs( 1, xl) = 0, abs( 1, x2) = 0} 

[> Al:=subs(setX,op(A)) : 
[ > fl:=subs(setX,op(f)) : 
[> f2:=subs(setXl,op(fl)): 
[ > B:=augment(Al,f2) : 
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> readlib(fortran); 
proc(x) ... 

[ > #f ortran (B, optimized) ;  This statement converts equations to computer code 
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APPENDIX B 

Equations of Motion Generated for a Three Bladed Simplified Rotor 
Model with MAPLE 

C 
The following is an excerpt from the MAPLE worksheet which was programmed to carry out the 

Lagrangian derivation of the equations of motion for a 3 bladed coupled rotor fuselage system. 
[  

[> 
[ FUSELAGE X-DIRECTTON: 

> EOM1[1]=0; 

-mbx cos(%5) Q2 el - mb2 cos(%4) Q2 el - mb3 cos(%2) Q2 el +M{ %7 

d 
- mbx R cos(%5) cos(d(0) ^ + m\ %7 + mbi %7 + mb* %7 + ci [jt "^ 

(d2 

+ 2mblR sin(%5) Q sin(d(0) %6 - mbi R cos(%5) sin(Ci(0) I ^W 

+ mbl R sin(%5) fi2 sin(d(0) ~ 2 w*i * cos(%5) Q cos(d(0) %6 

H-m^ 7? sin(%5) sin(Ci(0) %62 + *i "i(0 -«*i * sin(%5) cos(d(0) 

- mbx R cos(%5) Q2 cos(£,(0) - «*2 i? cos(%4) Q2 cos(C2(0) 

+ 2mb2R sin(%4) Q sm((^(t))%3 - mb% R cos(%4) cos(C2(0) %32 

'a2 ' 

- i»Ä2 i? cos(%4) sin(C2(0) 
.3/ 

+ mi2i?sin(%4)O2sin((;2(0) 

2 /?;62 i? cos(%4) Q cos(Cj(0) %3 + «Ä2Ä sin(%4) sin(C2(0) %3' 
rd2 

,3 ^ C(0   - /w*3 Ä cos(%2) fi cos(C3(0) -/»*a/2sin(%4)cos(C3(0)   ,, 

+ 2mb3R sin(%2) fi sin(C3(0) %1 -mb3R cos(%2) cos( £,(/))%l' 

rr 

mbj R cos(%2) sm(^(()) 
rd2 

\dt J 

2    . 
+ m&1£sin(%2)fi sin(C3(0) 

- 2 /«&, 7? cos(%2) fi cos(C3(0) %1 + «*3 
R sin(%2) sin(C3(0) %1' 

-7»63/?sin(0/o2)cos(£3(0) = 0 

Page  1 



%2 := n / + <D, 

%3~-c2(0 
dt 

%4:=Qt + $2 

%5 := Q / + <J>! 

%7:- — «,(0 

[ FUSELAGE Y-DIRECTION: 
> EOM1[2]=0; 

-OT&3 sin(%6) D2 el - mbx sin(%4) Cl2 el - mb2 sin(%2) Cl2 el + c21 — u2(t)J + K2 u2{t) 

\dt 
+M2 %7 + mbx %7 + mb2 %7 + mb3 %7 - m£2 R sin(%2) sin(C2(0) 

-wi2R cos(%2) Q2 sin(C2(0) -2mb2R sin(%2) Q cos(C2(0) %* 

fö2 

- mb2 R cos(%2) sin(Ca(0) %12 + ™*3 * cos(%6) cos(£3(0) (3^(0 

- mi3 7? sin(%6) Q2 cos(C3(0) -2mb3R cos(%6) O sin(C3(0) %5 

fa2     x 

- mb3 R sin(%6) oos(C3(0) 0/°52 ~ mh R sin(%6) sin(C3(0) WO ^r3 

-mb3 R cos(%6) Q2 sin(^(0) - 2 »*2>3 R sin(%6) H cos(C3(0) %5 

- mb3 R cos(%6) sin(C3(0) %52 - wi, /? sin(%4) O2 cos(C,(0) 

- 2 m*i R cos(%4) Q sin(Cj(0) %3 - m*i * sin(%4) cos(d(0) %32 

/^ 

■m4lÄsin(%4)sin(C1(0)I^Ci(0 -^1i?cos(%4)Q2sin(<;i(0) 

- 2 /»Äl i? sin(%4) n cos(Ci(0) %3-mbl R cos(%4) sin(Ci(0) %3: 

f^2 
+ wi1i?cos(%4)cos(Ci(0)  ~lCi(0 ■mb2RsH%2)Qfcos(t;2(t)) 

2 mb2 R cos(%2) Q sin(C2(0) %1 + mb2 R cos(%2) cos(C2(0) 
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- mb2 R sin(%2) cos(C2(0) %V = 0 

d 
dt 2 

%2 := O t + <S>, 

«3:--W 

%4:=Qr + 0, 

°/o5:=-C(0 

& 

[ ROTOR BLADE 1 LEAD LAG: 
> EOM1[3]=0; 

Kex ^(t) + Czetct{ [%W)j ~ ™bv 
rd2 

.ot 
i?cos(%l)sin(d(0) 

fa2 

fa2 ^ 
~mbi   77 Ma(0 

vd/1 

i?sin(%l) cosCdCOH^M 
V 
^ 

■C,(0 

\ 

i?sin(%l)sin(Cl(0) + ^i 
.9/ 

i?cos(%l)cos(^[(/)) 

+ m£in
2e/JRsm(Cl(O) = 0 

%1 := n Z1 + *t 

[ ROTOR BLADE 2 LEAD LAG: 
> EOM1[4]=0; 

Ke2 Cj(0 + OTÖj n2 e/ /? sin(C2(0) + mb2 R2 

f =2 N 

■«0 - w&, la7"2(0 i?sin(%l)sin(C2(0) 

+ mb~ 

-mb~ 

Jot 
uJt) 

,2 "3 i?cos(%l)cos(C2(0)->A 
t# 

\ rd2 

\0t 

Kdr 
ux(t) i?cos(%l)sin(C2(0) 

R sin(%l) cos(C2(0) + Czeta2I ~ W = 0 

%1 :=fH + ®2 

[ ROTOR BLADE 3 LEAD LAG: 
[> EOM1[5]=0; 
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f a      "\ 
Ke3C!3(0 + Czeta3[jt^(/.)J + mb3 R* mb-. 

\ot. J 
i?sm(%l)sin(C3(0) 

+ mb* 

mb* 

r# 

d2 

,ot J 

R cos(%l) cos(C3(0) - mb3 Äcos(%l)sin(£3(/)) 

R sin(%l) cos(C3(/)) + w&3 °' ß7 Ä sin(C3(0) = 0 

%I :=n? + $. 
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APPENDIX C 

OPTIMIZED CODE GENERATED BY MAPLE FOR THE SIMPLE THREE 

BLADED COUPLED ROTOR- FUSELAGE MODEL 
[  
' MAPLE converts the elements of B, which is an augmented matrix B= [A fj> from their symbolic 
. representation into FORTRAN code (or C code if desired). 

> fortran(B,optimized)/ 
t2 = mb(l)*R 
t3  = Omega*t 
t4 = t3+Phi(l) 
t5  =  cos(t4) 
t6 = s±n(x(8)) 
t7  = t5*t6 
t9 = sin(t4) 
tlO = cos(x<8)) 
til  = t9*tl0 
tl3  = -t2*t7-t2*tll 
tl4  = mb(2)*R 
tl5  = t3+Phi{2) 
tl6 =  cos(tl5) 
tl7  = s±n(x(9)) 
tl8  = tl6*tl7 
t20 =  sin(tl5) 
t21  =  cos(x(9)) 
t22   =  t20*t21 
t24   =  -tl4*tl8-tl4*t22 
t25  = mb(3)*R 
t26  =  t3+Phi(3) 
t27   =  cos(t26) 
t28  = sin(x{10)) 
t29  =  t27*t28 
t31  = sin(t26) 
t32  = cos(x(10)) 
t33  =  t31*t32 
t35  =  -t25*t29-t25*t33 
t42  = Oraega**2 
t43  = t42*el 
t45  =  t5*t42 
t48   =  t2*t9 
t50  = Omega*t6*x(3) 
t52  = t5*tl0 
t53  = x(3)**2 
t56 = t9*t42 
t59  = t2*t5 
t61  = Omega*tl0*x(3) 
t63  = t9*t6 
t68  = tl6*t42 
t71  = -v(l)*x(l)*abs(x(l))-K(l)*x(6)-c(l)*x(l)+mb{l)*t5*t43+t2*t45 

#*tl0-2*t48*t50+t2*t52*t53-t2*t56*t6+2*t59*t61-t2*t63*t53+mb(2)*tl6 

#*t43+tl4*t68*t21 
t72   =  tl4*t20 
t74  = Omega*tl7*x(4) 
t76- =  tl6*t21 page  ! 



t77 = x(4)**2 
t80 = t20*t42 
t83 = tl4*tl6 
t85 = Omega*t21*x(4) 
t81  = t20*tl7 
t92 = t27*t42 
t95 = t25*t31 
t97 = Omega*t28*x(5) 
t99 = t27*t32 
tlOO = x(5)**2 
tl03 = t31*t42 
tl06 = t25*t27 
tl08 = Omega*t32*x(5) 
tllO = t31*t28 
tll3 = -2*t72*t74+tl4*t76*t77-tl4*t80*tl7+2*t83*t85-tl4*t87*t77+mb 
#(3)*t27*t43+t25*t92*t32-2*t95*t97+t25*t99*tl00-t25*tl03*t28+2*tl06 

#*tl08-t25*tll0*tl00 
tll8 = -t2*t63+t2*t52 
tl21 = -tl4*t87+tl4*t76 
tl24 = t25*t99-t25*tll0 
tl45 = -c(2)*x(2)-v(2)*x(2)*abs(x<2))-K(2)*x(7)+t25*t92*t28+2*t95* 
#tl08+mb(l)*t9*t43+t2*t56*tl0+2*t59*t50+t2*tll*t53+t2*t45*t6+2*t48* 

#t61+t2*t7*t53 
tl67 = mb<2)*t20*t43+t25*t29*tl00+tl4*t80*t21+2*t83*t74+tl4*t22*t7 
#7+tl4*t68*tl7+2*t72*t85+tl4*tl8*t77+mb(3)*t31*t43+t25*tl03*t32+2*t 

#106*t97+t25*t33*tl00 
tl69 = R**2 
tl76 = Ks(l)*signum(x(8)-z) 
tl80 = Ks(l)*signum(x(8)+z) 
tl85 = el*R 
tl89 = x(8)**2 
tl94 = u(l)-2*Vzeta(l)*x(3)*abs(x(3)>-tl76*x(8)/2+tl80*z/2+tl80*x{ 
#8)/2+tl76*z/2-mb(l)*t42*tl85*t6-Ke(l)*x(8)-Kd(l)*tl89*x(8)-Ks(l)*x 

#(8)-Czeta(l)*x(3) 
t!98 = Ks(2)*signum(x(9)-z) 
t203 = Ks(2)*signum(x(9)+z) 
t213 = x(9)**2 
t218 = tl98*z/2-tl98*x(9)/2+t203*z/2+t203*x(9)/2-2*Vzeta(2)*x(4)*a 

#bs(x(4))+u(2)-rito(2)*t42*tl85*tl7-Ke(2)*x(9)-Kd(2)*t213*x(9)-Ks(2)* 

#x(9)-Czeta(2)*x(4) 
t220 = x{10)**2 
t226 = Ks(3)*signum(x(10)-z) 
t231 = Ks(3)*signum(x(10)+z) 
t242 = -Kd(3)*t220*x(10)-Ke(3)*x(10)+u(3)-t226*x(10)/2+t226*z/2+t2 
#31*x(10)/2+t231*z/2-2*Vzeta(3)*x(5)*abs(x(5))-mb(3)*t42*tl85*t28-C 

#zeta(3)*x(5)-Ks(3)*x(10) 
mb(l)+mb(2)+mb(3)+M(l) 
0 
tl3 
t24 
t35 
t71+tll3 
0 
M (2) +mb (1) +mb (2) +mb (3) 
tll8 
tl21 
tl24 
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B(l, 1) 
B(l, 2) 
B(l, 3) 
B(l, 4) 
B(l, 5) 
B(l, 6) 
B(2, 1) 
B(2, 2) 
B(2 3) 
B(2 4) 
B(2 5) 



B(2,6) = tl45+tl67 
B(3,l) = tl3 
B(3,2) = tll8 
B(3,3) = mb(l)*tl69 
B(3,4) = 0 
B(3,5) = 0 
B(3,6) = tl94 
B(4,l) = t24 
B(4,2) = tl21 
B(4,3) = 0 
B(4,4) = mb(2)*tl69 
B{4,5) = 0 
B(4,6) = t218 
B(5fl) = t35 
B(5,2) = tl24 
B(5,3) = 0 
B(5,4) = 0 
B(5,5) = mb(3)*tl69 
B(5,6) = t242 
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APPENDIX D 

S-FUNCTION M-FHJE REPRESENTING THE DYNAMICS OF THE SIMPLE 

ROTOR-FUSELAGE THREE BLADED MODEL 

function [sys, xOJ = helo3bA(tAU,flag,Il,I2,I3,I4,15,I6) 

% function [sys, x0[ = hdo3bA(tAU,flag,n42,I3,I4,I5,I6) 
% 
%  S-function arguments: 
%  —  
% t     = time 
% x     = state vector 
% u     = input vector 
% flag = switch used by numerical integration (Simulation) 
% routine to access certain parts of the s-function 
% 
% S-function input parameters: 
% 
% 
%  II    = [mb(l),mb(2),mb(3),M(l),M(2)] 
% 
%  12    = [R,Omega,el,z] 
% 
% D    = [Phi(l),Phi(2),Phi(3)] 
% 
% 14    = [c(l),c(2),v(l),v(2), 
% Czeta(l),Czeta(2),Cieta(3), 
% Vzeta(l),Vzeta(2),Vzeta(3)] 
% 
% K    = [Ke(l)JKe(2)^e(3), 
% Kd(l)JKd(2),Kd(3), 
% Ks(l),Ks(2),Ks(3), 
•/. K(1),K(2)] 
% 
%  16    = [xrXUrYi^rlUr2Ur3i, 
% xXUYUli^2i»x3i] 
% 
% S-function to represent dynamics of 3 bladed coupled rotor- 
% fuselage model which considers only inplane degrees of 
% freedom, i.e., x and y translation«] fuselage degrees of freedom 
% and lead-lag rotor blade degrees of freedom. 
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% 
•/• Explanation of variables: 
%  

% 
%mb    ->   mass of blade 
%M     ->   effective mass of fuselage 
% R     ->   distance from lead-lag hinge to blade center of mass 
% el    ->   blade hinge offset 
% Omega ->   rotor speed 
% z     ->   angle at which blade bits stops 
% Phi   ->   Made phase angle w.r.t azimuth postion 
% c     ->   fuselage linear damping 
% v     ->   fuselage hydraulic damping 
%Czeta ->   Made linear damping 
% Vzeta ->   blade hydraulic damping 

effective stiffness of fuselage (landing gear stiffness) 
blade elastic spring constant 
Made duffing spring constant 
blade stop effective spring constant 
initial rate 
initial displacement 

% Define input parameters 

mb(l)=Il(l);mb<2>=Il(2);mb(3)=Il(3);M(l)=Il(4);M(2)=Il(5); 
R=I2(l);Omega=I2(2);el=I2(3);z=I2(4); 
Phi(l)=I3(l);Phi(2)=I3(2);Phi(3)=I3(3); 
c(lH4(l);c(2)=I4(2);v(l)=I4(3);v(2H4(4); 
Czeta(l>=I4(5);Czeta(2>=I4(6);Czeta(3)=I4(7); 
Vzeta(l)=I4(8);Vzeta(2>=I4(9);Vzeta(3>=I4(10); 
Ke(l)=I5(l);Ke(2)=I5(2);Ke<3)=I5(3); 
Kd(l)=I5(4);Kd(2)=I5(5);Kd(6>=I5(6); 
Ks(l)=I5(7);Ks<2)=I5(8);Ks(3)=I5<9); 
K(1)=K(10);K(2)=K(11); 
xrXi=I6(l);xrYi=I6(2);xrlf=I6X3);xr2i=I6(4);xr3i=I6(5); 
xXf=I6(6);xYi=I6X7);xli=I6(8);x2i=I6(9);i3i=I6(10); 

•/.K -> 

%Ke -> 

%Kd -> 

%Ks -> 

%xr_ 

% 
7-> 

% S-function flag conditionals 

ifflag = 0 

sys=[10,0,10^,0,01; 
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xD=[xrXUrYi^rli^r2i^r3i^Xi^Yi^li^2i^3i]; 

ebeifabs(flag) = l 

% Formulated equations of motion optimized for minimum number of floating 
% point operations. 

t2 = mb(l)*R; 
Ü = Omega*t; 
t4 = t3+Phi(l); 
t5 = sin(t4); 
t6 = cos(x(8)); 
t7 = <5*t6; 
t9 = cos(t4); 
tl0 = sin(x(8)); 
tll=t9*tl0; 
tl3 = -t2*t7-t2*tll; 
tl4 = mb(2)*R; 
tl5 = t3+Pbi(2); 
tl6 = cos(tl5); 
tl7 = sin(x(9)); 
tl8 = tl6*tl7; 
t20 = sin(tl5); 
t21 = cos(i(9)); 
t22 = t20*t21; 
t24 = -tl4*tl8-tl4*t22; 
t25 = mb(3)*R; 
t26 = t3+PhK3); 
t27 = cos(t26); 
t28 = sin(x(10)); 
t29 = t27*t28; 
t31 = sin(t26); 
t32 = cos(x(10)); 
t33 = t31*t32; 
t35 = -t25*t29-t25*t33; 
t40 = t2*t9; 
t42 = Omega*t6*x(3); 
t44 = tS*tlO; 
t45 = x(3)A2; 
t48 = OmegaA2; 
t49 = tl6*t48; 
t52 = tl4*t20; 
t54 = Omega*tl7*x(4); 
t56 = tl6*t21; 
t57 = x(4)A2; 
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t60 = t20*t48; 
t63 = tl4-tl6; 
t65 = Omega*t21*x(4); 
t67 = t20*U7; 
t71 = t48*el; 
t73 = t27*t48; 
t76 = -v(l)*x(l)*abs(i(l))-c(l)*i(l>f 2*t40*t42-t2*t44*t45+tl4*t49*... 
t21-2*t52*t54+tl4*t56*t57-tl4*«J0*tl7+2*t63*t65-tl4*t67*t57+mb(3)*... 
t27*t71+t25*t73*t32; 

t77 = t25H31; 
t79 = Omega*t28*x(5); 
t81 = t27*t32; 
t82 = x(5)A2; 
t85 = t31*t48; 
t88 = t25*t27; 
t90 = Omega*t32*x(5); 
t92 = t31*t28; 
t97 = t9*t48; 
tlOO = t2*tS; 
tl02 = Omega*tl0*x(3); 
tl04 = t9*t6; 
tl07 = tS*t48; 
tll3 = -2*t77*t79+t25*t81*t82-t25*t85*t28+2*t88*t90-t25*m*t82+mb(l)-. 
*t9*t71+t2*t97*t6-2*tl00*tl02+t2*tl04*t45-t2*tl07*tl(Hmb(2)*tl6... 
*t71-K(l)*x(6); 
tll8 = -t2*t44+t2*tl04; 
tl21 = -U4*t67+tl4*tS6; 
tl24 = -t25*t92+t25*t81; 
tl46 = -v(2)*x(2)*abs(x(2))-K(2)*x(7)-c(2)*x(2>*- mb<2)*t20Ät71+tl4*^ 
t60*t21+2*td3*t54+tl4*t22*t57+mb(3)*t31*t71+tl4*t49*tl7+2*t52*t65+... 
tl4*tl8*tS7+t25*t85*t32; 
tl67 = 2*t88*t79+t25*t33*t82+t25*t73*t28+2*t77*t9<m25*t29*t82+mb(l)... 
*t5*t71+t2*tl07*t6+2*t40*tl02+t2*t7*t45+t2*t97*tl(H2*tlOO*t42+t2... 
*tll*t45; 

tl69 = RA2; 
tl71 = x(8)A2; 
tl77 = Ks(l)*sign(x(8)-z); 
tl85 = Ks(l)*sign(x(8)+z); 
tl89 = el*R; 
tl% = -Kd(l)*tl71*x(8)-Ke(l)*x(8)+tl77*z/2-tl77*x(8)/2-2*VzeU(l)... 
*x(3)*abs(x(3)>+tl85*z/2+tl85*x(8y2-mb(l)*t48*tl89*tl(H-u(l)^. 
-Ks<l)*x(8)-Czeta(l)*x(3); 

t203 = Ks(2)*sign(x(9)-z); 
t208 = Ks<2)*sign(x(9>+z); 
t217 = x(9)A2; 
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t222 = -2*Vzeta(2)*x(4)*abs(x(4))+t203*2/2-t203*x(9)/2+t208*2/2+t208... 
*x(9)/2-mb(2)*t48*tl89*tl7-Ks(2)*x(9)-Czeta(2)*x(4)-Ke(2)*x(9)-Kd(2). 
*t217*x(9)+u(2); 

t224 = x(10)A2; 
t237 - Ks(3)*sigii(x(10)-z); 
t242 - Ks(3)*sign(x(10)+z); 
t248 - -Kd(3)*t224*x(10)-Ke(3)*x(10)-mb(3)*t48*tl89*t28-Ks(3)*x(10)..< 

-2*Vzeta(3)*x(5)*abs(x(S))-t237*x(10)/2+t237*z/2+t242*z/2-Czcta(3)... 
*x(5)+u(3)+t242*x(10)/2; 

B(l,l) = mb(l)+mb(2>+n»b(3HM(l); 
B(U) = 0; 
B(U) = tl3; 
B(l,4) = t24; 
B(l,5) = t35; 
B(l,6) = t76+tll3; 
B(2,l) = 0; 
B(2,2) = M(2)+mb(l>+n»b(2)+mb(3); 
B(2,3) = tll8; 
B(2,4) = tl21; 
B(2,5) = tl24; 
B(2,6) = tl46+tl67; 
B(3,l) = tl3; 
B(3,2) = tll8; 
B(3,3) = mb(l)*tl69; 
B(3,4) = 0; 
B(3,5) = 0; 
B(3,6) = tl96; 
B(4,l) = t24; 
B(4,2) = tl21; 
B(4,3) = 0; 
B(4,4) = mb(2)*tl69; 
B(4,5) = 0; 
B(4,6) = t222; 
B(5,l) = t35; 
B(5,2) = tl24; 
8(5,3) = 0; 
B(5,4) = 0; 
B(5,5) = mb{3)*tl69; 
B(5,6) = t248; 

% Calculate derivatives 

[m,n]=size(B); 
Al=B(:,l:n-l); 
fl=B(:,ii); 
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sys=zeros(l,2*iii); 
sys(l:5)=Al\fl; 
sys(6:10)=x(l:5); 

% Output states 

dseifabs(flag) = 3 

sys=x; 

else 

sys = D; 

end 
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APPENDIXE 

MOVING BLOCK ANALYSIS CODE 

The following group of MATLAB® programs can be used to perform a moving 
block modal damping analysis on a signals that are either unimodal or bimodal. The 
organization of the code is as follows: 

mbloc is the primary code and calls maxCm and frecur; maxßm calls getmax and fit 
( from the MATLAB® Signal Processing Toolbox function library) and dft. dampA is a 
separate code that is used to curve fit the resulting moving block plot. 

MBLOC; 

function [logFM14ogF2,t2,omega,N,Nb]=mbloc(X,sr) 

% function pogF,t]=mbloc(X,sr) 
% 
% MBLOC calculates the magnitude of the discrete 
% Fourier transforms of block segments of a signal 
% for moving block damping analysis. This code is 
% specifically designed to handle a signal with 1 or 
% 2 dominant modes. 
% 
•/• X     -> vector which contains the signal 
% sr    -> sampling rate at which signal was obtained 
% logFl,2-> vector containing the natural logs of the 
% moving block function for each successive 
% block 
% tl«2  -> vector containing the times initializing 
% each block 
% omega -> frequency at which the moving block function 
% is evaluated 
% N     -> signal length after it is padded with zeros 
% Nb    -> block length. 
% f    -> frequency spectrum of FFT(0 to Nyquistfreq) 
% Pxx   -> power spectrum (magnitude of FFT) 
% wl,2 -> vector of frequencies over zoomed frequency 
% interval 
% 
% Copyright (c) 1997 by Chris S. Robinson 
% AU rights reserved 
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*/• Call routine which determines frequency of interest 
% and block size for evaluation of moving block function 

[omega^,Nb^Jfrx,wl,absFl,w2,absF2]=maxf2in(X^r); 

% Pad signal with zeros if length is not a power of 2 
% (this step is done because the fft routine contained 
% in the function maxfum also pads the original signal 
% with zeros if necessary). If signal length is a power 
% of 2 initially then this step leaves the signal 
% unaltered. 

l=N-length(X); 
z=zeros(U); 
X=[Xz]; 

% Evaluate the moving block function along signal using frecur and then fit 
% resulting curve with linear least squares fit 

PogFl,tl]=frecur(X,omega(l)fNb(l)^r); 
PogF2,t2]=frecur(X,omega(2y«fb(2)^sr); 
pl=polyfit(tUogFl,l); 
p2=polyfit(t24ogF2,l); 
fitl=polyval(pl,tl); 
fit2=potyval(p2,t2); 

% Plot the FFT results, the zoomed DFT results and moving block function versus 
*/• time 

subpIot(3,l,l) 
plot(f,Pxx,V); 
xlabel('frequency (Hz)'); 
yUbeK,radiansA2/Hz'); 
tWeCMoving Block Plot'); 
subpk)t(3,M) 
pto^wMbsFl/r'^^bsEZ/g'); 
xlabdffrequency (Hz)'); 
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ylabd('radiaiisA2/Hz'); 
subplot(3,l,3) 
plotCtiaogFl/rStl^itl/r-'^aogFZ/g'^^itl/g-'); 
xlabel('time (sec)1); 
ylabd('log(|F(w)|y); 
grid 
dampl=-pl(l)/(2*pi*omega(l)) 
damp2=-p2(l)/(2*pi*omega(2)) 

MAXF2M; 

function [omega^,NB,f,Pxx,wl,absFl,w2,absF2J=maxf2m(X,sr) 

% function omega=maxf2m(X£r) 
% 
% MAXF2N computes the 2 dominant maximum of a 
% bi-modal signal, X, in the frequency domain 
% by using a fft for an initial estimate and then refining 
% the solution by dividing the interval bounded by 
% the nearest harmonics to the fit solution into subintervals. 
% The Fourier coefficients are found at each of the 
% frequencies defined by the subintervals, and a new 
% maximum is found. The intervals nearest to the maximum 
% are further subdivided and the maximum obtained is 
% considered an adequate estimate. 
% 
% X    -> Vector containing the values of the signal 
% sr   -> sampling rate at which the signal generated/recorded 
% omega -> the frequency of die dominant mode present in the 
% signal 
% N    -> length of signal padded with zeros 
% Nb   -> length of signal block that will be used for the 
% moving block analysis 
%Pxx -> Power spectrum of signal (magnitude of FFT) 
% f    -> frequency spectrum of FFT   
% u4 -> two dominant frequencies estimated from FFT, refined 
% estimate will be made about these two frequencies 
% absFl,2 -> Power spectrum over the zoomed intervals about 
•/• about the estimated frequencies 
% omegal,2 ->The refined estimates of two dominant frequencies 
% NB1,2   ->Block sizes, corresponding to the refined frequency 
% estimates, to be used for the moving block 
% calcualtions 
% 
% Copyright (c) 1997 by Chris S. Robinson 
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% AD rights reserved 

% Determine signal length and the number of points to be added 
% to make that length a power of 2, then take the fast Fourier 
% transform, instructing the fit routine to pad the signal with 
% the proper number of zeros if necessary. 

n=tength(X); 
N=2*(ceil(log2(n))); 
XF=fft(X,N); 

% Take the results of the fft and determinethe power spectrum 
*/• of the signal 

m=length(XF); 
Pxr=XF.*conj(XF)/m; 
nyq=sr/2; 
f=nyq*(0:N/2)/(N/2); 
Pxx(N/2+2:N>=Q; 
Pxx(2:N/2)=2*Pxx(2:N/2); 

*/• Get a first estimate of the signal frequencies by finding the 
% frequencies corresponding to the spikes in the power 
% spectrum, then take the largest two. 

[maxV4ndV]=getmax(Pxx); 
[maxVs4J=sort(maxV); 
maxVs=fliph-(maxVs); 
i=fliplr(i); 
u=f(indV(i(l))); 
Nf(indV(K2))); 
dOmega=abs(u-l); 

% Zoom in on estimated frequency and take discrete Fourier 
% transform for frequencies on an interval around the initial 
*/• estimates in order to refine the fft resolution 
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nb=floor(length(X)/2); 
kl=nb/sr*u; 
k2=nb/sr*l; 
h^eü(length(X)*dOmega/nyq) 
Nb=nb-10*h:nb+10*h; 
wl=Nb.A(-l)*kl*sr; 
w2=Nb.A(-l)*k2*sn 
absFl=dft(X,sr,Nb,wl); 
absF2=dft(X*r,Nb,w2); 

% Determine refined frequency estimate from results of discrete 
% Fourier transforms of zoomed interval by finding frequency 
% that corresponds to the maximum in the zoomed power spectrum 

%%%%%%%%%%%%%%%%%%%%%%%%%*%%%%%%%%%% 

[maxFl,indl]=getmax(absFl); 
[maxF24nd2J=getmax(absF2); 
[dummy4ndla]=max(maxFl); 
indlb=indl(indla); 
[dummy 4nd2a]=max(maxF2); 
ind2b=ind2(ind2a); 

% Return the frequency and block size for two modes 
%%%%%%%%%%%%%%%%%%%%*%************** 

NBl=Nb(indlb); 
omegal=wl(indlb); 
NB2=Nb(ind2b); 
omega2=w2(ind2b); 
NB=[NB1 NB2]; 
omega-[omegal omega2]; 

FRECUR: 

function pogF,t]=frecur(X,omega^b^r) 

% function pogF,t]=frecur(X,omega,Nb,sr) 

% FRECÜR evaluates the moving block function for a signal 
% given the frequency of interest and the block length 
% using the recursion method. 
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% (only good for boxcar windowing) 
% 
% Copyright (c) 1997 by Chris S. Robinson 
% All rights reserved 

% Evaluate the Fourier coefficients for the initial block. 
% This step also initializes the recursion formula for 
% evaluation of all subsequent blocks. 

N=length(X); 
kb=omega*Nb/sr; 
Xb=X(l:Nb); 
c=cos(2*pi*kb/Nb*(0:Nb-l)); 
s=sin(2*pi*kb/Nb*(0:Nb-l)); 
a(l)=2/Nb*sum(Xb.*c); 
b(l)=2/Nb*sum(Xb.*s); 
t(i)=0; 

*/• Evalute the Fourier coefficients for the reamaining 
% blocks by applying the recursion formula 

forT=2:N-Nb; 
a(T)=(«(T-l)+2^b*(X(Nb+T-l>-X(T-l)))*cos<2*pi*kb/Nb)^ 

+b(T-l)*sin(2*pi*kb/Nb); 
b(T>^a(T-l>f2^«)*(X(Nb+T-l>X(T-l)))*sm(2*pi*kb/Nb)^. 

+b(T-l)*cos(2*pi*kb/Nb); 
t(THT-l)/sn 

end 

% Evaluate the natural log of the moving block function for 
% each block. 

logF=l/2*log(a.A2+b.A2); 

GETMAX: 

function [maxV,indV]=getmax(X) 
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% function [maxV,indV]=getmax(X) 
% 
% GETMAX determines the relative maximum points 
% in a vector of data (X). 

n=length(X); 
count=0; 
for i=l:n-2 

a=X(i+l)-X(i); 
b=X(i+l)-X(i+2); 
if(sign(a) = sign(b) & a > 0) 
count=count+l; 
maiV(count)=X(i+l); 
indV(count)=i+l; 

end 
end 

DFT: 

function absF=dft(X^r,Nb,w) 

% function absF=dft(X*r,Nb,w) 
% 
% DFT computes the discrete Fourier transform 
% magnitude of a signal, X, sampled at a rate, sr 
% at the frequency w (w is in Hz). 
% 
%X -> Vector containing signal 
% sr -> sampling rate at which signal was created 
% Nb -> Vector of number of points in sub-block of 
%       signal over which the discrete Fourier 
%       transform will be applied 
% w  -> Vector of frequencies over which the discrete 
%       Fourier transform will calculated (each has a 
%       corresponding block size from the Nb vector) 
% 
% Copyright (c) 1997 by Chris S. Robinson 
% All rights reserved 

% Evaluate discrete Fourier Transform by calculating 
% the Fourier coefficients at the frequency of interest 
% Return a vector containing the magnitudes of the dft 
% at the frequencies contained in the vector w. 
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for i=l:length(w) 

N=Nb(i); 
k=N*w(i)/sn 
x=0:N-l; 
tl=2*pi*k*x/N; 
c=cos(tl); 
s=sin(tl); 
C=X(l:N).*c; 
S=X(l:N).*s; 
a=2/N*sum(C); 
b=2/N*sum(S); 
absF(i)=aA2+bA2; 

end 

PAMPA: 

function y=dampA(logF,t,t3tart,tstop,oniega) 

•/• function y=HlampA(logF,t,tstart,tstop,omega) 
•/. 
% function DAMPA performs least squares fit of moving 
% block data and calcuahes the damping modal damping 
% from the slope of the fit 
•/. 
% logF   -> vector of natural logs of the moving block 
% function values. 
% t      -> time vector which corresponds to the times 
% at the beginning of the each block in the 
% moving block analysis. 
*/• tstart -> Start time for section of moving block plot 
% to be least squares fitted. 
*/• tstop  -> Stop time for section of moving block plot 
% to be least squares fitted. 
% omega  -> frequency of used in moving block analysis. 
% 
% Copyright (c) 1997 by Chris S. Robinson 
% AD rights reserved 
•/. 
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% Extract the pertinent section of the moving block plot 
% according to the user defined start and stop times 

u=ones(Uength(t)); 
utl=tstart*u; 
ut2=tstop*u; 
[dummy,indll=min(abs(t-utl)); 
[dummy,ind2]=min(abs(t-ut2)); 

% Perform a first order polynomial fit to moving block plot 

p=polyfit(t(indl:ind2)4ogF(indl:ind2),l); 

% Use the resulting slope from the least squares fit to 
% determine the modal damping and return this value 

y=-p(l)/(2*pi*omega); 
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APPENDIX F 

INPUT FILE FOR COMPLEX ROTOR-FUSELAGE MODEL 

% This m-file serves as input file for running the simulink 
% S-function helo3B.m. 
% 

% Hdo Physical and Aerodynamic parameters 

% Distance from fuselage center of mass to hub (length). 

h=.7907; 

% Hinge offset (length). 

el=.2791; 

% Length of rotor blade (length). 

R= 2.3809; 

% Mass of rotor blades (mass). 

mb(l)=0.01432; % LBS/g (SLUGS) 
mb{2)=0.01432; 
mb(3)=0.01432; 

% Effective mass of fuselage and moments of inertia (mass 
% or mass*lengthA2). 

Ml=1.5486; 
M2=1^060; 
Ill=.13497; 
I22=.4669; 
112=0; 

% Blade azimuth phase angles (radians) 

Phi(l)=0; 
Phi(2)=2*pi/3; 
Phi(3)=4*pi/3; 

% Rotor speed (radians per/sec) 
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Omega=75.39; 

% Blade spring stiffnesses 

%     Linear springs for lead-lag (moment/radian) 

kll(l)=143.85 
kll(2)=143.85 
kll(3)=143.85 

%     Linear springs for flap (moment/radian) 

kfl(l)=3138 
kfl(2)=3138 
kfl(3)=3138 

%      Duffing springs for lead-lag (moment/radianA3) 

kl3(lH); 
k!3(2H); 
kl3(3)=0; 

*/•     Duffing springs for flap (moment/radianA3) 

kf3(l)=0; 
kf3<2>=0; 
kf3(3)=0; 

% Blade damping constants 

%      Damping in lead-lag (moment/(rad/sec)) 

d(l)=3.55 
d(2)=3i5 
d<3)=3.55 

%     Damping in flap (moment/(rad/sec)) 

cf(l)=0; 
cff2H>; 
cff3)=0; 

% Fuselage effective stiffness 

110 



%     Translation^ (force/length) 

KT1=3000; 
KT2=3000; 

%     Rotational (moment/radian) 

KR1=280.35; 
KR2=46.60; 

% Fuselage damping constants 

%     Translation^ linear (force/(length/sec)) 

CT1=0; 
CT2=4>; 

%     Translational nonlinear (force/(length/sec)A2) 

VT1=0; 
VT2=0; 

%     Rotational linear (moment/(rad/sec>) 

CR1=1.061449; 
CR2=1.29852; 

%     Rotational nonlinear (moment/(rad/sec)A2) 

VR1=0; 
VR2=0; 

% Aerodynamic parameters. 

%     lift curve slope (1/radian) 

a=2*pi; 

%     Parasite drag coefficient 

cd0=0.0079; 

%     Air density (mass/lengthA3) 

rhol=0.002377; 
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%      Rotor chord (length) 

c=0.137; 

%     Advance ratio 

mu=0; 

%     Inflow ratio 

lambda=0; % set to zero for all cases until trim 
% routine is setup 

% Initial conditions 

%     Fuselage translational rates (length/sec) 

xrtXi=0; 
xrtYi=0; 

%     Fuselage rotational rates (radians/sec) 

xrrXi=.l; 
xrrYi=0; 

%     Blade lead-lag rates (radians/sec) 

xrlli=0; 
xr21i=0; 
xr31i=0; 

%     Blade flap rates (radians/sec) 

xrlfi=0; 
ir2fi=0; 
xr3fi=0; 

%     Fuselage translational displacements (length) 

xtXi=0; 
xtYi=0; 

%     Fuselage rotational displacements (radians) 
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irXi=0; 
xrYi=0; 

%     Blade lead-lag displacement (radians) 

xlli=0; 
x21i=0; 
x31i=0; 

%     Blade flap displacement (radians) 

xlfi=0; 
x2fi=0; 
x3fi=0; 

% Form input matrices from above parameters 

Il=Ih,elAmb(l)»n»lK2)^nb(3)^I13t2ail422412^.. 
Omega^bi(l)^hi(2)^hi(3)]; 

I2=pdl(l)4dl(2)4dl(3)4d3(l)4d3(2)4d3(3);^ 
kfl(l)Jrfl(2)4rfl(3)4£f3(l)4£f3(2)Jd3(3);.« 
cf(l),cf(2),cf(3),cl(l),cl(2),cl(3)]; 

D=[KT1,KT2,KR1,KR2;... 
CT1,CT2,CR1,CR2;.^ 
VT1,VT2,VR1,VR21; 

I4=[a,cd0,rhol,c,mu,lambda]; 

B=[xrtXi^utYi^rrXi^iTYi^lfi^2fi^3fi^lli^21i^r31il; 

I6=[xtXi^Yi^Xi^rYUlli^2fi^3fi^lli^2üVx3M]; 
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